summaryrefslogtreecommitdiff
path: root/src/mongo/db/storage/flow_control_test.cpp
blob: d588dd2c565a1cdf5ffefb173c47d4ce2efdc053 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/**
 *    Copyright (C) 2019-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kStorage

#include "mongo/platform/basic.h"

#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/concurrency/flow_control_ticketholder.h"
#include "mongo/db/concurrency/lock_manager_defs.h"
#include "mongo/db/repl/replication_coordinator_mock.h"
#include "mongo/db/service_context_d_test_fixture.h"
#include "mongo/db/storage/flow_control.h"
#include "mongo/db/storage/flow_control_parameters_gen.h"
#include "mongo/unittest/unittest.h"

namespace mongo {

class FlowControlTest : public ServiceContextMongoDTest {
public:
    void setUp() {
        ServiceContextMongoDTest::setUp();
        auto replCoord = std::make_unique<repl::ReplicationCoordinatorMock>(getServiceContext());
        auto replCoordPtr = replCoord.get();
        repl::ReplicationCoordinator::set(getServiceContext(), std::move(replCoord));

        FlowControlTicketholder::set(getServiceContext(),
                                     std::make_unique<FlowControlTicketholder>(1000 * 1000));

        // For ease of testing, create a sample on every call.
        gFlowControlSamplePeriod.store(1);
        flowControl = std::make_unique<FlowControl>(replCoordPtr);

        client = getServiceContext()->makeClient("FlowControl Client");
        opCtx = client->makeOperationContext();
    }

    std::unique_ptr<FlowControl> flowControl;
    ServiceContext::UniqueClient client;
    ServiceContext::UniqueOperationContext opCtx;
};

TEST_F(FlowControlTest, AddingSamples) {
    // Create a sample entry for every five operations. This better simulates reality than the
    // testing value of one. The timestamp is incremented by one for each operation.
    gFlowControlSamplePeriod.store(5);

    int nextTimestamp = 1;

    const auto& samples = flowControl->_getSampledOpsApplied_forTest();
    ASSERT(samples.size() == 0);

    // The first operation will not yet generate a sample.
    flowControl->sample(Timestamp(nextTimestamp++), 1);
    ASSERT(samples.size() == 0);

    // Adding four more entries will generate a new sample.
    for (int idx = 0; idx < 4; ++idx) {
        flowControl->sample(Timestamp(nextTimestamp++), 1);
    }
    ASSERT_EQ(1u, samples.size());
    // Adding five operations in one call will generate a new sample. However, the sampling
    // structure will now have the state:
    //
    // TS: 5 -> 5 operations
    // TS: 6 -> 10 operations
    //
    // In a perfect world, operation 10 would be represented at timestamp 10.
    flowControl->sample(Timestamp(nextTimestamp), 5);
    nextTimestamp += 5;
    ASSERT_EQ(2u, samples.size());

    // Adding nine operations in one call will generate a third sample. Following that with sampling
    // a single operation does not* create a fourth sample. A full five operations must come in to
    // create the next sample.
    flowControl->sample(Timestamp(nextTimestamp), 9);
    nextTimestamp += 9;
    ASSERT_EQ(3u, samples.size());

    flowControl->sample(Timestamp(nextTimestamp++), 1);
    ASSERT_EQ(3u, samples.size());
    flowControl->sample(Timestamp(nextTimestamp), 4);
    ASSERT_EQ(4u, samples.size());
    nextTimestamp += 4;

    ASSERT_EQ(25, nextTimestamp);
    // This test asserts the timestamps in the sample deque. The requirements of those values in
    // practice are very relaxed. It may make sense to remove this testing if the sampling algorithm
    // becomes more sophisticated.
    const bool assertSampledTimestamps = true;
    if (assertSampledTimestamps) {
        ASSERT_EQ(5u, std::get<0>(samples[0]));
        ASSERT_EQ(6u, std::get<0>(samples[1]));
        ASSERT_EQ(11u, std::get<0>(samples[2]));
        ASSERT_EQ(21u, std::get<0>(samples[3]));
    }
}

TEST_F(FlowControlTest, TrimmingSamples) {
    // Create 10 samples from times 0->9.
    for (int idx = 0; idx < 10; ++idx) {
        flowControl->sample(Timestamp(idx), 1);
    }

    const auto& samples = flowControl->_getSampledOpsApplied_forTest();
    ASSERT_EQ(10u, samples.size());

    // Trim all samples smaller than five. This should leave half of the samples.
    flowControl->_trimSamples(Timestamp(5));
    ASSERT_EQ(5u, samples.size());

    // Attempt to trim the remaining samples. Flow control will leave the last two samples alone for
    // calculating other metrics.
    flowControl->_trimSamples(Timestamp(100));
    ASSERT_EQ(2u, samples.size());
}

TEST_F(FlowControlTest, OutOfOrderSamplesDropped) {
    // While operation timestamps are generated in order by replication, they are not given to flow
    // control in order. This helps prevent unnecessary lock contention. Because flow control is
    // resilient to noisy data, it's acceptable to drop data to keep the deque in sorted order (a
    // requirement for searching).
    flowControl->sample(Timestamp(1), 1);
    const auto& samples = flowControl->_getSampledOpsApplied_forTest();
    ASSERT_EQ(1u, samples.size());
    ASSERT_EQ(1u, std::get<0>(samples[0]));

    flowControl->sample(Timestamp(3), 1);
    ASSERT_EQ(2u, samples.size());
    ASSERT_EQ(3u, std::get<0>(samples[1]));

    flowControl->sample(Timestamp(2), 1);
    ASSERT_EQ(2u, samples.size());
    ASSERT_EQ(3u, std::get<0>(samples[1]));
}

TEST_F(FlowControlTest, QueryingSamples) {
    // Create 100 samples from times 0->99.
    for (int idx = 0; idx < 100; ++idx) {
        flowControl->sample(Timestamp(idx), 1);
    }

    for (int start = 0; start < 100; ++start) {
        for (int end = start; end < 100; ++end) {
            ASSERT_EQ(end - start,
                      flowControl->_approximateOpsBetween(Timestamp(start), Timestamp(end)))
                << "Start: " << start << " End: " << end;
        }
    }
}

TEST_F(FlowControlTest, QueryingLocksPerOp) {
    // Create 100 samples. Grab the global IX lock once for the first sample, twice for the second,
    // etc...
    for (int numSamples = 1; numSamples <= 100; ++numSamples) {
        for (int globalLock = 0; globalLock < numSamples; ++globalLock) {
            Lock::GlobalLock lk(opCtx.get(), LockMode::MODE_IX);
        }

        flowControl->sample(Timestamp(numSamples), 1);

        // Need two points to make a line.
        if (numSamples > 1) {
            ASSERT_EQ(numSamples, flowControl->_getLocksPerOp());

            BSONElement noopVar;
            auto serverStatusSection = flowControl->generateSection(opCtx.get(), noopVar);
            ASSERT_EQ(numSamples * 1000, serverStatusSection["locksPerKiloOp"].Double());
        } else {
            ASSERT_EQ(-1.0, flowControl->_getLocksPerOp());
        }
    }
}

TEST_F(FlowControlTest, CalculatingTickets) {
    // Construct a state where the majority point lag is at the threshold with the sustainer node
    // processing 1,000 operations per second. The primary in that case will shoot for 95%
    // (gFlowControlFudgeFactor) of 1,000. Given an input 2.0 locksPerOp, the number of tickets
    // returned should be 950 * 2 = 1900.
    //
    // There's no dependency on gFlowControlDecayConstant in this test because we set the majority
    // point lag to the lag threshold.
    gFlowControlFudgeFactor.store(0.95);

    // Constructs a member data instance with an optime at term 1, timestamp `ts`. The wallclock
    // times are not initialized.
    auto constructMemberData = [](Timestamp ts) -> repl::MemberData {
        repl::MemberData ret;
        ret.setLastAppliedOpTimeAndWallTime({{ts, 1}, Date_t()}, Date_t());
        return ret;
    };

    // In the previous observation, all nodes are applied up through 1000.
    std::vector<repl::MemberData> prevMemberData;
    prevMemberData.emplace_back(constructMemberData(Timestamp(1000)));
    prevMemberData.emplace_back(constructMemberData(Timestamp(1000)));
    prevMemberData.emplace_back(constructMemberData(Timestamp(1000)));

    // In the current observation, the secondaries are at 2000 while the primary is at 3000.
    std::vector<repl::MemberData> currMemberData;
    currMemberData.emplace_back(constructMemberData(Timestamp(2000)));
    currMemberData.emplace_back(constructMemberData(Timestamp(2000)));
    currMemberData.emplace_back(constructMemberData(Timestamp(3000)));

    // Construct samples where Timestamp X maps to operation number X.
    for (int ts = 1; ts <= 3000; ++ts) {
        flowControl->sample(Timestamp(ts), 1);
    }

    const std::int64_t locksUsedLastPeriod = -1;  // Irrelevant to this call.
    const double locksPerOp = 2.0;
    const std::uint64_t thresholdLag = 1;
    const std::uint64_t currLag = thresholdLag;
    ASSERT_EQ(1900,
              flowControl->_calculateNewTicketsForLag(prevMemberData,
                                                      currMemberData,
                                                      locksUsedLastPeriod,
                                                      locksPerOp,
                                                      currLag,
                                                      thresholdLag));
}
}  // namespace mongo