summaryrefslogtreecommitdiff
path: root/src/mongo/db/storage/key_string.cpp
blob: dbda051b01ea61b00bb073601ae36b7ee3bd7626 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
// key_string.cpp

/**
 *    Copyright (C) 2014 MongoDB Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kStorage

#include "mongo/platform/basic.h"

#include "mongo/db/storage/key_string.h"

#include <cmath>

#include "mongo/base/data_view.h"
#include "mongo/platform/bits.h"
#include "mongo/util/hex.h"
#include "mongo/util/log.h"

namespace mongo {

using std::string;

namespace {
typedef KeyString::TypeBits TypeBits;

namespace CType {
// canonical types namespace. (would be enum class CType: uint8_t in C++11)
// Note 0-9 and 246-255 are disallowed and reserved for value encodings.
// For types that encode value information in the ctype byte, the value in this list is
// the "generic" one to be used to represent all values of that ctype, such as in the
// encoding of fields in Objects.
const uint8_t kMinKey = 10;
const uint8_t kUndefined = 15;
const uint8_t kNullish = 20;
const uint8_t kNumeric = 30;
const uint8_t kStringLike = 60;
const uint8_t kObject = 70;
const uint8_t kArray = 80;
const uint8_t kBinData = 90;
const uint8_t kOID = 100;
const uint8_t kBool = 110;
const uint8_t kDate = 120;
const uint8_t kTimestamp = 130;
const uint8_t kRegEx = 140;
const uint8_t kDBRef = 150;
const uint8_t kCode = 160;
const uint8_t kCodeWithScope = 170;
const uint8_t kMaxKey = 240;

// These are ordered by the numeric value of the values encoded in each format.
// Therefore each format can be considered independently without considering
// cross-format comparisons.
const uint8_t kNumericNaN = kNumeric + 0;
const uint8_t kNumericNegativeLargeDouble = kNumeric + 1;  // <= -2**63 including -Inf
const uint8_t kNumericNegative8ByteInt = kNumeric + 2;
const uint8_t kNumericNegative7ByteInt = kNumeric + 3;
const uint8_t kNumericNegative6ByteInt = kNumeric + 4;
const uint8_t kNumericNegative5ByteInt = kNumeric + 5;
const uint8_t kNumericNegative4ByteInt = kNumeric + 6;
const uint8_t kNumericNegative3ByteInt = kNumeric + 7;
const uint8_t kNumericNegative2ByteInt = kNumeric + 8;
const uint8_t kNumericNegative1ByteInt = kNumeric + 9;
const uint8_t kNumericNegativeSmallDouble = kNumeric + 10;  // between 0 and -1 exclusive
const uint8_t kNumericZero = kNumeric + 11;
const uint8_t kNumericPositiveSmallDouble = kNumeric + 12;  // between 0 and 1 exclusive
const uint8_t kNumericPositive1ByteInt = kNumeric + 13;
const uint8_t kNumericPositive2ByteInt = kNumeric + 14;
const uint8_t kNumericPositive3ByteInt = kNumeric + 15;
const uint8_t kNumericPositive4ByteInt = kNumeric + 16;
const uint8_t kNumericPositive5ByteInt = kNumeric + 17;
const uint8_t kNumericPositive6ByteInt = kNumeric + 18;
const uint8_t kNumericPositive7ByteInt = kNumeric + 19;
const uint8_t kNumericPositive8ByteInt = kNumeric + 20;
const uint8_t kNumericPositiveLargeDouble = kNumeric + 21;  // >= 2**63 including +Inf
static_assert(kNumericPositiveLargeDouble < kStringLike,
              "kNumericPositiveLargeDouble < kStringLike");

const uint8_t kBoolFalse = kBool + 0;
const uint8_t kBoolTrue = kBool + 1;
static_assert(kBoolTrue < kDate, "kBoolTrue < kDate");

size_t numBytesForInt(uint8_t ctype) {
    if (ctype >= kNumericPositive1ByteInt) {
        dassert(ctype <= kNumericPositive8ByteInt);
        return ctype - kNumericPositive1ByteInt + 1;
    }

    dassert(ctype <= kNumericNegative1ByteInt);
    dassert(ctype >= kNumericNegative8ByteInt);
    return kNumericNegative1ByteInt - ctype + 1;
}
}  // namespace CType

uint8_t bsonTypeToGenericKeyStringType(BSONType type) {
    switch (type) {
        case MinKey:
            return CType::kMinKey;

        case EOO:
        case jstNULL:
            return CType::kNullish;

        case Undefined:
            return CType::kUndefined;

        case NumberDouble:
        case NumberInt:
        case NumberLong:
            return CType::kNumeric;

        case mongo::String:
        case Symbol:
            return CType::kStringLike;

        case Object:
            return CType::kObject;
        case Array:
            return CType::kArray;
        case BinData:
            return CType::kBinData;
        case jstOID:
            return CType::kOID;
        case Bool:
            return CType::kBool;
        case Date:
            return CType::kDate;
        case bsonTimestamp:
            return CType::kTimestamp;
        case RegEx:
            return CType::kRegEx;
        case DBRef:
            return CType::kDBRef;

        case Code:
            return CType::kCode;
        case CodeWScope:
            return CType::kCodeWithScope;

        case MaxKey:
            return CType::kMaxKey;
        default:
            invariant(false);
    }
}

// First double that isn't an int64.
const double kMinLargeDouble = 9223372036854775808.0;  // 1ULL<<63

const uint8_t kEnd = 0x4;

// These overlay with CType or kEnd bytes and therefor must be less/greater than all of
// them (and their inverses). They also can't equal 0 or 255 since that would collide with
// the encoding of NUL bytes in strings as "\x00\xff".
const uint8_t kLess = 1;
const uint8_t kGreater = 254;
}  // namespace

// some utility functions
namespace {
void memcpy_flipBits(void* dst, const void* src, size_t bytes) {
    const char* input = static_cast<const char*>(src);
    char* output = static_cast<char*>(dst);
    const char* const end = input + bytes;
    while (input != end) {
        *output++ = ~(*input++);
    }
}

template <typename T>
T readType(BufReader* reader, bool inverted) {
    // TODO for C++11 to static_assert that T is integral
    T t = ConstDataView(static_cast<const char*>(reader->skip(sizeof(T)))).read<T>();
    if (inverted)
        return ~t;
    return t;
}

StringData readCString(BufReader* reader) {
    const char* start = static_cast<const char*>(reader->pos());
    const char* end = static_cast<const char*>(memchr(start, 0x0, reader->remaining()));
    invariant(end);
    size_t actualBytes = end - start;
    reader->skip(1 + actualBytes);
    return StringData(start, actualBytes);
}

/**
 * scratch must be empty when passed in. It will be used if there is a NUL byte in the
 * output string. In that case the returned StringData will point into scratch, otherwise
 * it will point directly into the input buffer.
 */
StringData readCStringWithNuls(BufReader* reader, std::string* scratch) {
    const StringData initial = readCString(reader);
    if (reader->peek<unsigned char>() != 0xFF)
        return initial;  // Don't alloc or copy for simple case with no NUL bytes.

    scratch->append(initial.rawData(), initial.size());
    while (reader->peek<unsigned char>() == 0xFF) {
        // Each time we enter this loop it means we hit a NUL byte encoded as "\x00\xFF".
        *scratch += '\0';
        reader->skip(1);

        const StringData nextPart = readCString(reader);
        scratch->append(nextPart.rawData(), nextPart.size());
    }

    return *scratch;
}

string readInvertedCString(BufReader* reader) {
    const char* start = static_cast<const char*>(reader->pos());
    const char* end = static_cast<const char*>(memchr(start, 0xFF, reader->remaining()));
    invariant(end);
    size_t actualBytes = end - start;
    string s(start, actualBytes);
    for (size_t i = 0; i < s.size(); i++) {
        s[i] = ~s[i];
    }
    reader->skip(1 + actualBytes);
    return s;
}

string readInvertedCStringWithNuls(BufReader* reader) {
    std::string out;
    do {
        if (!out.empty()) {
            // If this isn't our first pass through the loop it means we hit an NUL byte
            // encoded as "\xFF\00" in our inverted string.
            reader->skip(1);
            out += '\xFF';  // will be flipped to '\0' with rest of out before returning.
        }

        const char* start = static_cast<const char*>(reader->pos());
        const char* end = static_cast<const char*>(memchr(start, 0xFF, reader->remaining()));
        invariant(end);
        size_t actualBytes = end - start;

        out.append(start, actualBytes);
        reader->skip(1 + actualBytes);
    } while (reader->peek<unsigned char>() == 0x00);

    for (size_t i = 0; i < out.size(); i++) {
        out[i] = ~out[i];
    }

    return out;
}
}  // namespace

void KeyString::resetToKey(const BSONObj& obj, Ordering ord, RecordId recordId) {
    resetToEmpty();
    _appendAllElementsForIndexing(obj, ord, kInclusive);
    appendRecordId(recordId);
}

void KeyString::resetToKey(const BSONObj& obj, Ordering ord, Discriminator discriminator) {
    resetToEmpty();
    _appendAllElementsForIndexing(obj, ord, discriminator);
}

// ----------------------------------------------------------------------
// -----------   APPEND CODE  -------------------------------------------
// ----------------------------------------------------------------------

void KeyString::_appendAllElementsForIndexing(const BSONObj& obj,
                                              Ordering ord,
                                              Discriminator discriminator) {
    int elemCount = 0;
    BSONObjIterator it(obj);
    while (auto elem = it.next()) {
        const int elemIdx = elemCount++;
        const bool invert = (ord.get(elemIdx) == -1);

        _appendBsonValue(elem, invert, NULL);

        dassert(elem.fieldNameSize() < 3);  // fieldNameSize includes the NUL

        // IndexEntryComparison::makeQueryObject() encodes a discriminator in the first byte of
        // the field name. This discriminator overrides the passed in one. Normal elements only
        // have the NUL byte terminator. Entries stored in an index are not allowed to have a
        // discriminator.
        if (char ch = *elem.fieldName()) {
            // l for less / g for greater.
            invariant(ch == 'l' || ch == 'g');
            discriminator = ch == 'l' ? kExclusiveBefore : kExclusiveAfter;
            invariant(!it.more());
        }
    }

    // The discriminator forces this KeyString to compare Less/Greater than any KeyString with
    // the same prefix of keys. As an example, this can be used to land on the first key in the
    // index with the value "a" regardless of the RecordId. In compound indexes it can use a
    // prefix of the full key to ignore the later keys.
    switch (discriminator) {
        case kExclusiveBefore:
            _append(kLess, false);
            break;
        case kExclusiveAfter:
            _append(kGreater, false);
            break;
        case kInclusive:
            break;  // No discriminator byte.
    }

    // TODO consider omitting kEnd when using a discriminator byte. It is not a storage format
    // change since keystrings with discriminators are not allowed to be stored.
    _append(kEnd, false);
}

void KeyString::appendRecordId(RecordId loc) {
    // The RecordId encoding must be able to determine the full length starting from the last
    // byte, without knowing where the first byte is since it is stored at the end of a
    // KeyString, and we need to be able to read the RecordId without decoding the whole thing.
    //
    // This encoding places a number (N) between 0 and 7 in both the high 3 bits of the first
    // byte and the low 3 bits of the last byte. This is the number of bytes between the first
    // and last byte (ie total bytes is N + 2). The remaining bits of the first and last bytes
    // are combined with the bits of the in-between bytes to store the 64-bit RecordId in
    // big-endian order. This does not encode negative RecordIds to give maximum space to
    // positive RecordIds which are the only ones that are allowed to be stored in an index.

    int64_t raw = loc.repr();
    if (raw < 0) {
        // Note: we encode RecordId::min() and RecordId() the same which is ok, as they are
        // never stored so they will never be compared to each other.
        invariant(raw == RecordId::min().repr());
        raw = 0;
    }
    const uint64_t value = static_cast<uint64_t>(raw);
    const int bitsNeeded = 64 - countLeadingZeros64(raw);
    const int extraBytesNeeded =
        bitsNeeded <= 10 ? 0 : ((bitsNeeded - 10) + 7) / 8;  // ceil((bitsNeeded - 10) / 8)

    // extraBytesNeeded must fit in 3 bits.
    dassert(extraBytesNeeded >= 0 && extraBytesNeeded < 8);

    // firstByte combines highest 5 bits of value with extraBytesNeeded.
    const uint8_t firstByte =
        uint8_t((extraBytesNeeded << 5) | (value >> (5 + (extraBytesNeeded * 8))));
    // lastByte combines lowest 5 bits of value with extraBytesNeeded.
    const uint8_t lastByte = uint8_t((value << 3) | extraBytesNeeded);

    // RecordIds are never appended inverted.
    _append(firstByte, false);
    if (extraBytesNeeded) {
        const uint64_t extraBytes = endian::nativeToBig(value >> 5);
        // Only using the low-order extraBytesNeeded bytes of extraBytes.
        _appendBytes(reinterpret_cast<const char*>(&extraBytes) + sizeof(extraBytes) -
                         extraBytesNeeded,
                     extraBytesNeeded,
                     false);
    }
    _append(lastByte, false);
}

void KeyString::appendTypeBits(const TypeBits& typeBits) {
    // As an optimization, encode AllZeros as a single 0 byte.
    if (typeBits.isAllZeros()) {
        _append(uint8_t(0), false);
        return;
    }

    _appendBytes(typeBits.getBuffer(), typeBits.getSize(), false);
}

void KeyString::_appendBool(bool val, bool invert) {
    _append(val ? CType::kBoolTrue : CType::kBoolFalse, invert);
}

void KeyString::_appendDate(Date_t val, bool invert) {
    _append(CType::kDate, invert);
    // see: http://en.wikipedia.org/wiki/Offset_binary
    uint64_t encoded = static_cast<uint64_t>(val.asInt64());
    encoded ^= (1LL << 63);  // flip highest bit (equivalent to bias encoding)
    _append(endian::nativeToBig(encoded), invert);
}

void KeyString::_appendTimestamp(Timestamp val, bool invert) {
    _append(CType::kTimestamp, invert);
    _append(endian::nativeToBig(val.asLL()), invert);
}

void KeyString::_appendOID(OID val, bool invert) {
    _append(CType::kOID, invert);
    _appendBytes(val.view().view(), OID::kOIDSize, invert);
}

void KeyString::_appendString(StringData val, bool invert) {
    _typeBits.appendString();
    _append(CType::kStringLike, invert);
    _appendStringLike(val, invert);
}

void KeyString::_appendSymbol(StringData val, bool invert) {
    _typeBits.appendSymbol();
    _append(CType::kStringLike, invert);  // Symbols and Strings compare equally
    _appendStringLike(val, invert);
}

void KeyString::_appendCode(StringData val, bool invert) {
    _append(CType::kCode, invert);
    _appendStringLike(val, invert);
}

void KeyString::_appendCodeWString(const BSONCodeWScope& val, bool invert) {
    _append(CType::kCodeWithScope, invert);
    _appendStringLike(val.code, invert);
    _appendBson(val.scope, invert);
}

void KeyString::_appendBinData(const BSONBinData& val, bool invert) {
    _append(CType::kBinData, invert);
    if (val.length < 0xff) {
        // size fits in one byte so use one byte to encode.
        _append(uint8_t(val.length), invert);
    } else {
        // Encode 0xff prefix to indicate that the size takes 4 bytes.
        _append(uint8_t(0xff), invert);
        _append(endian::nativeToBig(int32_t(val.length)), invert);
    }
    _append(uint8_t(val.type), invert);
    _appendBytes(val.data, val.length, invert);
}

void KeyString::_appendRegex(const BSONRegEx& val, bool invert) {
    _append(CType::kRegEx, invert);
    // note: NULL is not allowed in pattern or flags
    _appendBytes(val.pattern.rawData(), val.pattern.size(), invert);
    _append(int8_t(0), invert);
    _appendBytes(val.flags.rawData(), val.flags.size(), invert);
    _append(int8_t(0), invert);
}

void KeyString::_appendDBRef(const BSONDBRef& val, bool invert) {
    _append(CType::kDBRef, invert);
    _append(endian::nativeToBig(int32_t(val.ns.size())), invert);
    _appendBytes(val.ns.rawData(), val.ns.size(), invert);
    _appendBytes(val.oid.view().view(), OID::kOIDSize, invert);
}

void KeyString::_appendArray(const BSONArray& val, bool invert) {
    _append(CType::kArray, invert);
    BSONForEach(elem, val) {
        // No generic ctype byte needed here since no name is encoded.
        _appendBsonValue(elem, invert, NULL);
    }
    _append(int8_t(0), invert);
}

void KeyString::_appendObject(const BSONObj& val, bool invert) {
    _append(CType::kObject, invert);
    _appendBson(val, invert);
}

void KeyString::_appendNumberDouble(const double num, bool invert) {
    if (num == 0.0 && std::signbit(num)) {
        _typeBits.appendNegativeZero();
    } else {
        _typeBits.appendNumberDouble();
    }

    // no special cases needed for Inf,
    // see http://en.wikipedia.org/wiki/IEEE_754-1985#Positive_and_negative_infinity
    if (std::isnan(num)) {
        _append(CType::kNumericNaN, invert);
        return;
    }

    if (num == 0.0) {
        // We are collapsing -0.0 and 0.0 to the same value here.
        // This is correct as IEEE-754 specifies that they compare as equal,
        // however this prevents roundtripping -0.0.
        // So if you put a -0.0 in, you'll get 0.0 out.
        // We believe this to be ok.
        _append(CType::kNumericZero, invert);
        return;
    }

    const bool isNegative = num < 0.0;
    const double magnitude = isNegative ? -num : num;

    if (magnitude < 1.0) {
        // This includes subnormal numbers.
        _appendSmallDouble(num, invert);
        return;
    }

    if (magnitude < kMinLargeDouble) {
        uint64_t integerPart = uint64_t(magnitude);
        if (double(integerPart) == magnitude) {
            // No fractional part
            _appendPreshiftedIntegerPortion(integerPart << 1, isNegative, invert);
            return;
        }

        // There is a fractional part.
        _appendPreshiftedIntegerPortion((integerPart << 1) | 1, isNegative, invert);

        // Append the bytes of the mantissa that include fractional bits.
        const size_t fractionalBits = (53 - (64 - countLeadingZeros64(integerPart)));
        const size_t fractionalBytes = (fractionalBits + 7) / 8;
        dassert(fractionalBytes > 0);
        uint64_t mantissa;
        memcpy(&mantissa, &num, sizeof(mantissa));
        mantissa &= ~(uint64_t(-1) << fractionalBits);  // set non-fractional bits to 0;
        mantissa = endian::nativeToBig(mantissa);

        const void* firstUsedByte =
            reinterpret_cast<const char*>((&mantissa) + 1) - fractionalBytes;
        _appendBytes(firstUsedByte, fractionalBytes, isNegative ? !invert : invert);
        return;
    }

    _appendLargeDouble(num, invert);
}

void KeyString::_appendNumberLong(const long long num, bool invert) {
    _typeBits.appendNumberLong();
    _appendInteger(num, invert);
}

void KeyString::_appendNumberInt(const int num, bool invert) {
    _typeBits.appendNumberInt();
    _appendInteger(num, invert);
}

void KeyString::_appendBsonValue(const BSONElement& elem, bool invert, const StringData* name) {
    if (name) {
        _appendBytes(name->rawData(), name->size() + 1, invert);  // + 1 for NUL
    }

    switch (elem.type()) {
        case MinKey:
        case MaxKey:
        case EOO:
        case Undefined:
        case jstNULL:
            _append(bsonTypeToGenericKeyStringType(elem.type()), invert);
            break;

        case NumberDouble:
            _appendNumberDouble(elem._numberDouble(), invert);
            break;
        case String:
            _appendString(elem.valueStringData(), invert);
            break;
        case Object:
            _appendObject(elem.Obj(), invert);
            break;
        case Array:
            _appendArray(BSONArray(elem.Obj()), invert);
            break;
        case BinData: {
            int len;
            const char* data = elem.binData(len);
            _appendBinData(BSONBinData(data, len, elem.binDataType()), invert);
            break;
        }

        case jstOID:
            _appendOID(elem.__oid(), invert);
            break;
        case Bool:
            _appendBool(elem.boolean(), invert);
            break;
        case Date:
            _appendDate(elem.date(), invert);
            break;

        case RegEx:
            _appendRegex(BSONRegEx(elem.regex(), elem.regexFlags()), invert);
            break;
        case DBRef:
            _appendDBRef(BSONDBRef(elem.dbrefNS(), elem.dbrefOID()), invert);
            break;
        case Symbol:
            _appendSymbol(elem.valueStringData(), invert);
            break;
        case Code:
            _appendCode(elem.valueStringData(), invert);
            break;
        case CodeWScope: {
            _appendCodeWString(
                BSONCodeWScope(StringData(elem.codeWScopeCode(), elem.codeWScopeCodeLen() - 1),
                               BSONObj(elem.codeWScopeScopeData())),
                invert);
            break;
        }
        case NumberInt:
            _appendNumberInt(elem._numberInt(), invert);
            break;
        case bsonTimestamp:
            _appendTimestamp(elem.timestamp(), invert);
            break;
        case NumberLong:
            _appendNumberLong(elem._numberLong(), invert);
            break;

        default:
            invariant(false);
    }
}


/// -- lowest level

void KeyString::_appendStringLike(StringData str, bool invert) {
    while (true) {
        size_t firstNul = strnlen(str.rawData(), str.size());
        // No NULs in string.
        _appendBytes(str.rawData(), firstNul, invert);
        if (firstNul == str.size() || firstNul == std::string::npos) {
            _append(int8_t(0), invert);
            break;
        }

        // replace "\x00" with "\x00\xFF"
        _appendBytes("\x00\xFF", 2, invert);
        str = str.substr(firstNul + 1);  // skip over the NUL byte
    }
}

void KeyString::_appendBson(const BSONObj& obj, bool invert) {
    BSONForEach(elem, obj) {
        // Force the order to be based on (ctype, name, value).
        _append(bsonTypeToGenericKeyStringType(elem.type()), invert);
        StringData name = elem.fieldNameStringData();
        _appendBsonValue(elem, invert, &name);
    }
    _append(int8_t(0), invert);
}

void KeyString::_appendSmallDouble(double value, bool invert) {
    dassert(!std::isnan(value));
    dassert(value != 0.0);

    uint64_t data;
    memcpy(&data, &value, sizeof(data));

    if (value > 0) {
        _append(CType::kNumericPositiveSmallDouble, invert);
        _append(endian::nativeToBig(data), invert);
    } else {
        _append(CType::kNumericNegativeSmallDouble, invert);
        _append(endian::nativeToBig(data), !invert);
    }
}

void KeyString::_appendLargeDouble(double value, bool invert) {
    dassert(!std::isnan(value));
    dassert(value != 0.0);

    uint64_t data;
    memcpy(&data, &value, sizeof(data));

    if (value > 0) {
        _append(CType::kNumericPositiveLargeDouble, invert);
        _append(endian::nativeToBig(data), invert);
    } else {
        _append(CType::kNumericNegativeLargeDouble, invert);
        _append(endian::nativeToBig(data), !invert);
    }
}

// Handles NumberLong and NumberInt which are encoded identically except for the TypeBits.
void KeyString::_appendInteger(const long long num, bool invert) {
    if (num == std::numeric_limits<long long>::min()) {
        // -2**63 is exactly representable as a double and not as a positive int64.
        // Therefore we encode it as a double.
        dassert(-double(num) == kMinLargeDouble);
        _appendLargeDouble(double(num), invert);
        return;
    }

    if (num == 0) {
        _append(CType::kNumericZero, invert);
        return;
    }

    const bool isNegative = num < 0;
    const uint64_t magnitude = isNegative ? -num : num;
    _appendPreshiftedIntegerPortion(magnitude << 1, isNegative, invert);
}


void KeyString::_appendPreshiftedIntegerPortion(uint64_t value, bool isNegative, bool invert) {
    dassert(value != 0ull);
    dassert(value != 1ull);

    const size_t bytesNeeded = (64 - countLeadingZeros64(value) + 7) / 8;

    // Append the low bytes of value in big endian order.
    value = endian::nativeToBig(value);
    const void* firstUsedByte = reinterpret_cast<const char*>((&value) + 1) - bytesNeeded;

    if (isNegative) {
        _append(uint8_t(CType::kNumericNegative1ByteInt - (bytesNeeded - 1)), invert);
        _appendBytes(firstUsedByte, bytesNeeded, !invert);
    } else {
        _append(uint8_t(CType::kNumericPositive1ByteInt + (bytesNeeded - 1)), invert);
        _appendBytes(firstUsedByte, bytesNeeded, invert);
    }
}

template <typename T>
void KeyString::_append(const T& thing, bool invert) {
    _appendBytes(&thing, sizeof(thing), invert);
}

void KeyString::_appendBytes(const void* source, size_t bytes, bool invert) {
    char* const base = _buffer.skip(bytes);

    if (invert) {
        memcpy_flipBits(base, source, bytes);
    } else {
        memcpy(base, source, bytes);
    }
}


// ----------------------------------------------------------------------
// ----------- DECODING CODE --------------------------------------------
// ----------------------------------------------------------------------

namespace {
void toBsonValue(uint8_t ctype,
                 BufReader* reader,
                 TypeBits::Reader* typeBits,
                 bool inverted,
                 BSONObjBuilderValueStream* stream);

void toBson(BufReader* reader, TypeBits::Reader* typeBits, bool inverted, BSONObjBuilder* builder) {
    while (readType<uint8_t>(reader, inverted) != 0) {
        if (inverted) {
            std::string name = readInvertedCString(reader);
            BSONObjBuilderValueStream& stream = *builder << name;
            toBsonValue(readType<uint8_t>(reader, inverted), reader, typeBits, inverted, &stream);
        } else {
            StringData name = readCString(reader);
            BSONObjBuilderValueStream& stream = *builder << name;
            toBsonValue(readType<uint8_t>(reader, inverted), reader, typeBits, inverted, &stream);
        }
    }
}

void toBsonValue(uint8_t ctype,
                 BufReader* reader,
                 TypeBits::Reader* typeBits,
                 bool inverted,
                 BSONObjBuilderValueStream* stream) {
    // This is only used by the kNumeric.*ByteInt types, but needs to be declared up here
    // since it is used across a fallthrough.
    bool isNegative = false;

    switch (ctype) {
        case CType::kMinKey:
            *stream << MINKEY;
            break;
        case CType::kMaxKey:
            *stream << MAXKEY;
            break;
        case CType::kNullish:
            *stream << BSONNULL;
            break;
        case CType::kUndefined:
            *stream << BSONUndefined;
            break;

        case CType::kBoolTrue:
            *stream << true;
            break;
        case CType::kBoolFalse:
            *stream << false;
            break;

        case CType::kDate:
            *stream << Date_t::fromMillisSinceEpoch(
                endian::bigToNative(readType<uint64_t>(reader, inverted)) ^ (1LL << 63));
            break;

        case CType::kTimestamp:
            *stream << Timestamp(endian::bigToNative(readType<uint64_t>(reader, inverted)));
            break;

        case CType::kOID:
            if (inverted) {
                char buf[OID::kOIDSize];
                memcpy_flipBits(buf, reader->skip(OID::kOIDSize), OID::kOIDSize);
                *stream << OID::from(buf);
            } else {
                *stream << OID::from(reader->skip(OID::kOIDSize));
            }
            break;

        case CType::kStringLike: {
            const uint8_t originalType = typeBits->readStringLike();
            if (inverted) {
                if (originalType == TypeBits::kString) {
                    *stream << readInvertedCStringWithNuls(reader);
                } else {
                    dassert(originalType == TypeBits::kSymbol);
                    *stream << BSONSymbol(readInvertedCStringWithNuls(reader));
                }

            } else {
                std::string scratch;
                if (originalType == TypeBits::kString) {
                    *stream << readCStringWithNuls(reader, &scratch);
                } else {
                    dassert(originalType == TypeBits::kSymbol);
                    *stream << BSONSymbol(readCStringWithNuls(reader, &scratch));
                }
            }
            break;
        }

        case CType::kCode: {
            if (inverted) {
                *stream << BSONCode(readInvertedCStringWithNuls(reader));
            } else {
                std::string scratch;
                *stream << BSONCode(readCStringWithNuls(reader, &scratch));
            }
            break;
        }

        case CType::kCodeWithScope: {
            std::string scratch;
            StringData code;  // will point to either scratch or the raw encoded bytes.
            if (inverted) {
                scratch = readInvertedCStringWithNuls(reader);
                code = scratch;
            } else {
                code = readCStringWithNuls(reader, &scratch);
            }
            // Not going to optimize CodeWScope.
            BSONObjBuilder scope;
            toBson(reader, typeBits, inverted, &scope);
            *stream << BSONCodeWScope(code, scope.done());
            break;
        }

        case CType::kBinData: {
            size_t size = readType<uint8_t>(reader, inverted);
            if (size == 0xff) {
                // size was stored in 4 bytes.
                size = endian::bigToNative(readType<uint32_t>(reader, inverted));
            }
            BinDataType subType = BinDataType(readType<uint8_t>(reader, inverted));
            const void* ptr = reader->skip(size);
            if (!inverted) {
                *stream << BSONBinData(ptr, size, subType);
            } else {
                std::unique_ptr<char[]> flipped(new char[size]);
                memcpy_flipBits(flipped.get(), ptr, size);
                *stream << BSONBinData(flipped.get(), size, subType);
            }
            break;
        }

        case CType::kRegEx: {
            if (inverted) {
                string pattern = readInvertedCString(reader);
                string flags = readInvertedCString(reader);
                *stream << BSONRegEx(pattern, flags);
            } else {
                StringData pattern = readCString(reader);
                StringData flags = readCString(reader);
                *stream << BSONRegEx(pattern, flags);
            }
            break;
        }

        case CType::kDBRef: {
            size_t size = endian::bigToNative(readType<uint32_t>(reader, inverted));
            if (inverted) {
                std::unique_ptr<char[]> ns(new char[size]);
                memcpy_flipBits(ns.get(), reader->skip(size), size);
                char oidBytes[OID::kOIDSize];
                memcpy_flipBits(oidBytes, reader->skip(OID::kOIDSize), OID::kOIDSize);
                OID oid = OID::from(oidBytes);
                *stream << BSONDBRef(StringData(ns.get(), size), oid);
            } else {
                const char* ns = static_cast<const char*>(reader->skip(size));
                OID oid = OID::from(reader->skip(OID::kOIDSize));
                *stream << BSONDBRef(StringData(ns, size), oid);
            }
            break;
        }

        case CType::kObject: {
            BSONObjBuilder subObj(stream->subobjStart());
            toBson(reader, typeBits, inverted, &subObj);
            break;
        }

        case CType::kArray: {
            BSONObjBuilder subArr(stream->subarrayStart());
            int index = 0;
            uint8_t elemType;
            while ((elemType = readType<uint8_t>(reader, inverted)) != 0) {
                toBsonValue(elemType,
                            reader,
                            typeBits,
                            inverted,
                            &(subArr << BSONObjBuilder::numStr(index++)));
            }
            break;
        }

        //
        // Numerics
        //

        case CType::kNumericNaN:
            invariant(typeBits->readNumeric() == TypeBits::kDouble);
            *stream << std::numeric_limits<double>::quiet_NaN();
            break;

        case CType::kNumericZero:
            switch (typeBits->readNumeric()) {
                case TypeBits::kDouble:
                    *stream << 0.0;
                    break;
                case TypeBits::kInt:
                    *stream << 0;
                    break;
                case TypeBits::kLong:
                    *stream << 0ll;
                    break;
                case TypeBits::kNegativeZero:
                    *stream << -0.0;
                    break;
            }
            break;

        case CType::kNumericNegativeLargeDouble:
        case CType::kNumericNegativeSmallDouble:
            inverted = !inverted;
        // fallthrough (format is the same as positive, but inverted)

        case CType::kNumericPositiveLargeDouble:
        case CType::kNumericPositiveSmallDouble: {
            // for these, the raw double was stored intact, including sign bit.
            const uint8_t originalType = typeBits->readNumeric();
            uint64_t encoded = readType<uint64_t>(reader, inverted);
            encoded = endian::bigToNative(encoded);
            double d;
            memcpy(&d, &encoded, sizeof(d));

            if (originalType == TypeBits::kDouble) {
                *stream << d;
            } else {
                // This can only happen for a single number.
                invariant(originalType == TypeBits::kLong);
                invariant(d == double(std::numeric_limits<long long>::min()));
                *stream << std::numeric_limits<long long>::min();
            }

            break;
        }

        case CType::kNumericNegative8ByteInt:
        case CType::kNumericNegative7ByteInt:
        case CType::kNumericNegative6ByteInt:
        case CType::kNumericNegative5ByteInt:
        case CType::kNumericNegative4ByteInt:
        case CType::kNumericNegative3ByteInt:
        case CType::kNumericNegative2ByteInt:
        case CType::kNumericNegative1ByteInt:
            inverted = !inverted;
            isNegative = true;
        // fallthrough (format is the same as positive, but inverted)

        case CType::kNumericPositive1ByteInt:
        case CType::kNumericPositive2ByteInt:
        case CType::kNumericPositive3ByteInt:
        case CType::kNumericPositive4ByteInt:
        case CType::kNumericPositive5ByteInt:
        case CType::kNumericPositive6ByteInt:
        case CType::kNumericPositive7ByteInt:
        case CType::kNumericPositive8ByteInt: {
            const uint8_t originalType = typeBits->readNumeric();

            uint64_t encodedIntegerPart = 0;
            {
                size_t intBytesRemaining = CType::numBytesForInt(ctype);
                while (intBytesRemaining--) {
                    encodedIntegerPart =
                        (encodedIntegerPart << 8) | readType<uint8_t>(reader, inverted);
                }
            }

            const bool haveFractionalPart = (encodedIntegerPart & 1);
            long long integerPart = encodedIntegerPart >> 1;

            if (!haveFractionalPart) {
                if (isNegative)
                    integerPart = -integerPart;

                switch (originalType) {
                    case TypeBits::kDouble:
                        *stream << double(integerPart);
                        break;
                    case TypeBits::kInt:
                        *stream << int(integerPart);
                        break;
                    case TypeBits::kLong:
                        *stream << integerPart;
                        break;
                    case TypeBits::kNegativeZero:
                        invariant(false);
                }
            } else {
                // Nothing else can have a fractional part.
                invariant(originalType == TypeBits::kDouble);

                const uint64_t exponent = (64 - countLeadingZeros64(integerPart)) - 1;
                const size_t fractionalBits = (52 - exponent);
                const size_t fractionalBytes = (fractionalBits + 7) / 8;

                // build up the bits of a double here.
                uint64_t doubleBits = integerPart << fractionalBits;
                doubleBits &= ~(1ull << 52);  // clear implicit leading 1
                doubleBits |= (exponent + 1023 /*bias*/) << 52;
                if (isNegative) {
                    doubleBits |= (1ull << 63);  // sign bit
                }
                for (size_t i = 0; i < fractionalBytes; i++) {
                    // fold in the fractional bytes
                    const uint64_t byte = readType<uint8_t>(reader, inverted);
                    doubleBits |= (byte << ((fractionalBytes - i - 1) * 8));
                }

                double number;
                memcpy(&number, &doubleBits, sizeof(number));
                *stream << number;
            }

            break;
        }
        default:
            invariant(false);
    }
}
}  // namespace

BSONObj KeyString::toBson(const char* buffer, size_t len, Ordering ord, const TypeBits& typeBits) {
    BSONObjBuilder builder;
    BufReader reader(buffer, len);
    TypeBits::Reader typeBitsReader(typeBits);
    for (int i = 0; reader.remaining(); i++) {
        const bool invert = (ord.get(i) == -1);
        uint8_t ctype = readType<uint8_t>(&reader, invert);
        if (ctype == kLess || ctype == kGreater) {
            // This was just a discriminator which is logically part of the previous field. This
            // will only be encountered on queries, not in the keys stored in an index.
            // Note: this should probably affect the BSON key name of the last field, but it
            // must be read *after* the value so it isn't possible.
            ctype = readType<uint8_t>(&reader, invert);
        }

        if (ctype == kEnd)
            break;
        toBsonValue(ctype, &reader, &typeBitsReader, invert, &(builder << ""));
    }
    return builder.obj();
}

BSONObj KeyString::toBson(StringData data, Ordering ord, const TypeBits& typeBits) {
    return toBson(data.rawData(), data.size(), ord, typeBits);
}

RecordId KeyString::decodeRecordIdAtEnd(const void* bufferRaw, size_t bufSize) {
    invariant(bufSize >= 2);  // smallest possible encoding of a RecordId.
    const unsigned char* buffer = static_cast<const unsigned char*>(bufferRaw);
    const unsigned char lastByte = *(buffer + bufSize - 1);
    const size_t ridSize = 2 + (lastByte & 0x7);  // stored in low 3 bits.
    invariant(bufSize >= ridSize);
    const unsigned char* firstBytePtr = buffer + bufSize - ridSize;
    BufReader reader(firstBytePtr, ridSize);
    return decodeRecordId(&reader);
}

RecordId KeyString::decodeRecordId(BufReader* reader) {
    const uint8_t firstByte = readType<uint8_t>(reader, false);
    const uint8_t numExtraBytes = firstByte >> 5;  // high 3 bits in firstByte
    uint64_t repr = firstByte & 0x1f;              // low 5 bits in firstByte
    for (int i = 0; i < numExtraBytes; i++) {
        repr = (repr << 8) | readType<uint8_t>(reader, false);
    }

    const uint8_t lastByte = readType<uint8_t>(reader, false);
    invariant((lastByte & 0x7) == numExtraBytes);
    repr = (repr << 5) | (lastByte >> 3);  // fold in high 5 bits of last byte
    return RecordId(repr);
}

// ----------------------------------------------------------------------
//  --------- MISC class utils --------
// ----------------------------------------------------------------------

std::string KeyString::toString() const {
    return toHex(getBuffer(), getSize());
}

int KeyString::compare(const KeyString& other) const {
    int a = getSize();
    int b = other.getSize();

    int min = std::min(a, b);

    int cmp = memcmp(getBuffer(), other.getBuffer(), min);

    if (cmp) {
        if (cmp < 0)
            return -1;
        return 1;
    }

    // keys match

    if (a == b)
        return 0;

    return a < b ? -1 : 1;
}

void KeyString::TypeBits::resetFromBuffer(BufReader* reader) {
    if (!reader->remaining()) {
        // This means AllZeros state was encoded as an empty buffer.
        reset();
        return;
    }

    const uint8_t firstByte = readType<uint8_t>(reader, false);
    if (firstByte & 0x80) {
        // firstByte is the size byte.
        _isAllZeros = false;  // it wouldn't be encoded like this if it was.

        _buf[0] = firstByte;
        const uint8_t remainingBytes = getSizeByte();
        memcpy(_buf + 1, reader->skip(remainingBytes), remainingBytes);
        return;
    }

    // In remaining cases, firstByte is the only byte.

    if (firstByte == 0) {
        // This means AllZeros state was encoded as a single 0 byte.
        reset();
        return;
    }

    _isAllZeros = false;
    setSizeByte(1);
    _buf[1] = firstByte;
}

void KeyString::TypeBits::appendBit(uint8_t oneOrZero) {
    dassert(oneOrZero == 0 || oneOrZero == 1);

    if (oneOrZero == 1)
        _isAllZeros = false;

    const uint8_t byte = (_curBit / 8) + 1;
    const uint8_t offsetInByte = _curBit % 8;
    if (offsetInByte == 0) {
        setSizeByte(byte);
        _buf[byte] = oneOrZero;  // zeros bits 1-7
    } else {
        _buf[byte] |= (oneOrZero << offsetInByte);
    }

    _curBit++;
}

uint8_t KeyString::TypeBits::Reader::readBit() {
    if (_typeBits._isAllZeros)
        return 0;

    const uint8_t byte = (_curBit / 8) + 1;
    const uint8_t offsetInByte = _curBit % 8;
    _curBit++;

    dassert(byte <= _typeBits.getSizeByte());

    return (_typeBits._buf[byte] & (1 << offsetInByte)) ? 1 : 0;
}

}  // namespace mongo