summaryrefslogtreecommitdiff
path: root/src/mongo/db/transaction_participant.cpp
blob: 65613550dc8a8b50703148d0b5fb8e4bbd649538 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kStorage

#define LOG_FOR_TRANSACTION(level) \
    MONGO_LOG_COMPONENT(level, ::mongo::logger::LogComponent::kTransaction)

#include "mongo/platform/basic.h"

#include "mongo/db/transaction_participant.h"

#include <fmt/format.h>

#include "mongo/db/catalog/database_holder.h"
#include "mongo/db/catalog/index_catalog.h"
#include "mongo/db/catalog_raii.h"
#include "mongo/db/commands/test_commands_enabled.h"
#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/concurrency/lock_state.h"
#include "mongo/db/concurrency/locker.h"
#include "mongo/db/concurrency/replication_state_transition_lock_guard.h"
#include "mongo/db/concurrency/write_conflict_exception.h"
#include "mongo/db/curop_failpoint_helpers.h"
#include "mongo/db/dbdirectclient.h"
#include "mongo/db/dbhelpers.h"
#include "mongo/db/index/index_access_method.h"
#include "mongo/db/op_observer.h"
#include "mongo/db/ops/update.h"
#include "mongo/db/query/get_executor.h"
#include "mongo/db/repl/local_oplog_info.h"
#include "mongo/db/repl/repl_client_info.h"
#include "mongo/db/repl/storage_interface.h"
#include "mongo/db/retryable_writes_stats.h"
#include "mongo/db/server_recovery.h"
#include "mongo/db/server_transactions_metrics.h"
#include "mongo/db/stats/fill_locker_info.h"
#include "mongo/db/transaction_history_iterator.h"
#include "mongo/db/transaction_participant_gen.h"
#include "mongo/util/fail_point.h"
#include "mongo/util/log.h"
#include "mongo/util/net/socket_utils.h"

namespace mongo {
using namespace fmt::literals;
namespace {

// Failpoint which will pause an operation just after allocating a point-in-time storage engine
// transaction.
MONGO_FAIL_POINT_DEFINE(hangAfterPreallocateSnapshot);

MONGO_FAIL_POINT_DEFINE(hangAfterReservingPrepareTimestamp);

MONGO_FAIL_POINT_DEFINE(hangAfterSettingPrepareStartTime);

MONGO_FAIL_POINT_DEFINE(hangBeforeReleasingTransactionOplogHole);

MONGO_FAIL_POINT_DEFINE(skipCommitTxnCheckPrepareMajorityCommitted);

MONGO_FAIL_POINT_DEFINE(restoreLocksFail);

const auto getTransactionParticipant = Session::declareDecoration<TransactionParticipant>();

// The command names that are allowed in a prepared transaction.
const StringMap<int> preparedTxnCmdWhitelist = {
    {"abortTransaction", 1}, {"commitTransaction", 1}, {"prepareTransaction", 1}};

void fassertOnRepeatedExecution(const LogicalSessionId& lsid,
                                TxnNumber txnNumber,
                                StmtId stmtId,
                                const repl::OpTime& firstOpTime,
                                const repl::OpTime& secondOpTime) {
    severe() << "Statement id " << stmtId << " from transaction [ " << lsid.toBSON() << ":"
             << txnNumber << " ] was committed once with opTime " << firstOpTime
             << " and a second time with opTime " << secondOpTime
             << ". This indicates possible data corruption or server bug and the process will be "
                "terminated.";
    fassertFailed(40526);
}

struct ActiveTransactionHistory {
    boost::optional<SessionTxnRecord> lastTxnRecord;
    TransactionParticipant::CommittedStatementTimestampMap committedStatements;
    bool hasIncompleteHistory{false};
};

ActiveTransactionHistory fetchActiveTransactionHistory(OperationContext* opCtx,
                                                       const LogicalSessionId& lsid) {
    // Restore the current timestamp read source after fetching transaction history.
    ReadSourceScope readSourceScope(opCtx);

    ActiveTransactionHistory result;

    result.lastTxnRecord = [&]() -> boost::optional<SessionTxnRecord> {
        DBDirectClient client(opCtx);
        auto result =
            client.findOne(NamespaceString::kSessionTransactionsTableNamespace.ns(),
                           {BSON(SessionTxnRecord::kSessionIdFieldName << lsid.toBSON())});
        if (result.isEmpty()) {
            return boost::none;
        }

        return SessionTxnRecord::parse(IDLParserErrorContext("parse latest txn record for session"),
                                       result);
    }();

    if (!result.lastTxnRecord) {
        return result;
    }

    if (result.lastTxnRecord->getState()) {
        // When state is given, it must be a transaction, so we don't need to traverse the history.
        return result;
    }

    auto it = TransactionHistoryIterator(result.lastTxnRecord->getLastWriteOpTime());
    while (it.hasNext()) {
        try {
            const auto entry = it.next(opCtx);

            // Each entry should correspond to a retryable write or a FCV4.0 format transaction.
            // These oplog entries must have statementIds.
            invariant(entry.getStatementId());
            if (*entry.getStatementId() == kIncompleteHistoryStmtId) {
                // Only the dead end sentinel can have this id for oplog write history
                invariant(entry.getObject2());
                invariant(entry.getObject2()->woCompare(TransactionParticipant::kDeadEndSentinel) ==
                          0);
                result.hasIncompleteHistory = true;
                continue;
            }

            if (entry.getCommandType() == repl::OplogEntry::CommandType::kApplyOps &&
                !entry.shouldPrepare() && !entry.isPartialTransaction()) {
                result.lastTxnRecord->setState(DurableTxnStateEnum::kCommitted);
                return result;
            }

            const auto insertRes =
                result.committedStatements.emplace(*entry.getStatementId(), entry.getOpTime());
            if (!insertRes.second) {
                const auto& existingOpTime = insertRes.first->second;
                fassertOnRepeatedExecution(lsid,
                                           result.lastTxnRecord->getTxnNum(),
                                           *entry.getStatementId(),
                                           existingOpTime,
                                           entry.getOpTime());
            }
        } catch (const DBException& ex) {
            if (ex.code() == ErrorCodes::IncompleteTransactionHistory) {
                result.hasIncompleteHistory = true;
                break;
            }

            throw;
        }
    }

    return result;
}

void updateSessionEntry(OperationContext* opCtx, const UpdateRequest& updateRequest) {
    // Current code only supports replacement update.
    dassert(UpdateDriver::isDocReplacement(updateRequest.getUpdateModification()));

    AutoGetCollection autoColl(opCtx, NamespaceString::kSessionTransactionsTableNamespace, MODE_IX);

    uassert(40527,
            str::stream() << "Unable to persist transaction state because the session transaction "
                             "collection is missing. This indicates that the "
                          << NamespaceString::kSessionTransactionsTableNamespace.ns()
                          << " collection has been manually deleted.",
            autoColl.getCollection());

    WriteUnitOfWork wuow(opCtx);

    auto collection = autoColl.getCollection();
    auto idIndex = collection->getIndexCatalog()->findIdIndex(opCtx);

    uassert(40672,
            str::stream() << "Failed to fetch _id index for "
                          << NamespaceString::kSessionTransactionsTableNamespace.ns(),
            idIndex);

    auto indexAccess = collection->getIndexCatalog()->getEntry(idIndex)->accessMethod();
    // Since we are looking up a key inside the _id index, create a key object consisting of only
    // the _id field.
    auto idToFetch = updateRequest.getQuery().firstElement();
    auto toUpdateIdDoc = idToFetch.wrap();
    dassert(idToFetch.fieldNameStringData() == "_id"_sd);
    auto recordId = indexAccess->findSingle(opCtx, toUpdateIdDoc);
    auto startingSnapshotId = opCtx->recoveryUnit()->getSnapshotId();
    const auto updateMod = updateRequest.getUpdateModification().getUpdateClassic();

    if (recordId.isNull()) {
        // Upsert case.
        auto status = collection->insertDocument(opCtx, InsertStatement(updateMod), nullptr, false);

        if (status == ErrorCodes::DuplicateKey) {
            throw WriteConflictException();
        }

        uassertStatusOK(status);
        wuow.commit();
        return;
    }

    auto originalRecordData = collection->getRecordStore()->dataFor(opCtx, recordId);
    auto originalDoc = originalRecordData.toBson();

    invariant(collection->getDefaultCollator() == nullptr);
    boost::intrusive_ptr<ExpressionContext> expCtx(new ExpressionContext(opCtx, nullptr));

    auto matcher =
        fassert(40673, MatchExpressionParser::parse(updateRequest.getQuery(), std::move(expCtx)));
    if (!matcher->matchesBSON(originalDoc)) {
        // Document no longer match what we expect so throw WCE to make the caller re-examine.
        throw WriteConflictException();
    }

    CollectionUpdateArgs args;
    args.update = updateMod;
    args.criteria = toUpdateIdDoc;
    args.fromMigrate = false;

    collection->updateDocument(opCtx,
                               recordId,
                               Snapshotted<BSONObj>(startingSnapshotId, originalDoc),
                               updateMod,
                               false,  // indexesAffected = false because _id is the only index
                               nullptr,
                               &args);

    wuow.commit();
}

// Failpoint which allows different failure actions to happen after each write. Supports the
// parameters below, which can be combined with each other (unless explicitly disallowed):
//
// closeConnection (bool, default = true): Closes the connection on which the write was executed.
// failBeforeCommitExceptionCode (int, default = not specified): If set, the specified exception
//      code will be thrown, which will cause the write to not commit; if not specified, the write
//      will be allowed to commit.
MONGO_FAIL_POINT_DEFINE(onPrimaryTransactionalWrite);

}  // namespace

const BSONObj TransactionParticipant::kDeadEndSentinel(BSON("$incompleteOplogHistory" << 1));

TransactionParticipant::TransactionParticipant() = default;

TransactionParticipant::~TransactionParticipant() {
    // invariant(!_o.txnState.isInProgress());
}

TransactionParticipant::Observer::Observer(const ObservableSession& osession)
    : Observer(&getTransactionParticipant(osession.get())) {}

TransactionParticipant::Participant::Participant(OperationContext* opCtx)
    : Observer([opCtx]() -> TransactionParticipant* {
          if (auto session = OperationContextSession::get(opCtx)) {
              return &getTransactionParticipant(session);
          }
          return nullptr;
      }()) {}

TransactionParticipant::Participant::Participant(const SessionToKill& session)
    : Observer(&getTransactionParticipant(session.get())) {}

void TransactionParticipant::performNoopWrite(OperationContext* opCtx, StringData msg) {
    const auto replCoord = repl::ReplicationCoordinator::get(opCtx);

    // The locker must not have a max lock timeout when this noop write is performed, since if it
    // threw LockTimeout, this would be treated as a TransientTransactionError, which would indicate
    // it's safe to retry the entire transaction. We cannot know it is safe to attach
    // TransientTransactionError until the noop write has been performed and the writeConcern has
    // been satisfied.
    invariant(!opCtx->lockState()->hasMaxLockTimeout());

    {
        Lock::DBLock dbLock(opCtx, "local", MODE_IX);
        Lock::CollectionLock collectionLock(opCtx, NamespaceString::kRsOplogNamespace, MODE_IX);

        uassert(ErrorCodes::NotMaster,
                "Not primary when performing noop write for {}"_format(msg),
                replCoord->canAcceptWritesForDatabase(opCtx, "admin"));

        writeConflictRetry(
            opCtx, "performNoopWrite", NamespaceString::kRsOplogNamespace.ns(), [&opCtx, &msg] {
                WriteUnitOfWork wuow(opCtx);
                opCtx->getClient()->getServiceContext()->getOpObserver()->onOpMessage(
                    opCtx, BSON("msg" << msg));
                wuow.commit();
            });
    }
}

StorageEngine::OldestActiveTransactionTimestampResult
TransactionParticipant::getOldestActiveTimestamp(Timestamp stableTimestamp) {
    // Read from config.transactions at the stable timestamp for the oldest active transaction
    // timestamp. Use a short timeout: another thread might have the global lock e.g. to shut down
    // the server, and it both blocks this thread from querying config.transactions and waits for
    // this thread to terminate.
    auto client = getGlobalServiceContext()->makeClient("OldestActiveTxnTimestamp");
    AlternativeClientRegion acr(client);

    try {
        auto opCtx = cc().makeOperationContext();
        auto nss = NamespaceString::kSessionTransactionsTableNamespace;
        auto deadline = Date_t::now() + Milliseconds(100);

        ShouldNotConflictWithSecondaryBatchApplicationBlock shouldNotConflictBlock(
            opCtx->lockState());
        Lock::DBLock dbLock(opCtx.get(), nss.db(), MODE_IS, deadline);
        Lock::CollectionLock collLock(opCtx.get(), nss, MODE_IS, deadline);

        auto databaseHolder = DatabaseHolder::get(opCtx.get());
        auto db = databaseHolder->getDb(opCtx.get(), nss.db());
        if (!db) {
            // There is no config database, so there cannot be any active transactions.
            return boost::none;
        }

        auto collection = CollectionCatalog::get(opCtx.get()).lookupCollectionByNamespace(nss);
        if (!collection) {
            return boost::none;
        }

        if (!stableTimestamp.isNull()) {
            opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kProvided,
                                                          stableTimestamp);
        }

        // Scan. We guess that occasional scans are cheaper than the write overhead of an index.
        boost::optional<Timestamp> oldestTxnTimestamp;
        auto cursor = collection->getCursor(opCtx.get());
        while (auto record = cursor->next()) {
            auto doc = record.get().data.toBson();
            auto txnRecord = SessionTxnRecord::parse(
                IDLParserErrorContext("parse oldest active txn record"), doc);
            if (txnRecord.getState() != DurableTxnStateEnum::kPrepared &&
                txnRecord.getState() != DurableTxnStateEnum::kInProgress) {
                continue;
            }
            // A prepared transaction must have a start timestamp.
            invariant(txnRecord.getStartOpTime());
            auto ts = txnRecord.getStartOpTime()->getTimestamp();
            if (!oldestTxnTimestamp || ts < oldestTxnTimestamp.value()) {
                oldestTxnTimestamp = ts;
            }
        }

        return oldestTxnTimestamp;
    } catch (const DBException&) {
        return exceptionToStatus();
    }
}

const LogicalSessionId& TransactionParticipant::Observer::_sessionId() const {
    const auto* owningSession = getTransactionParticipant.owner(_tp);
    return owningSession->getSessionId();
}

void TransactionParticipant::Participant::_beginOrContinueRetryableWrite(OperationContext* opCtx,
                                                                         TxnNumber txnNumber) {
    if (txnNumber > o().activeTxnNumber) {
        // New retryable write.
        _setNewTxnNumber(opCtx, txnNumber);
        p().autoCommit = boost::none;
    } else {
        // Retrying a retryable write.
        uassert(ErrorCodes::IncompleteTransactionHistory,
                "Cannot retry a retryable write that has been converted into a transaction",
                o().txnState.isInRetryableWriteMode());
        invariant(p().autoCommit == boost::none);
    }
}

void TransactionParticipant::Participant::_continueMultiDocumentTransaction(OperationContext* opCtx,
                                                                            TxnNumber txnNumber) {
    uassert(ErrorCodes::NoSuchTransaction,
            str::stream()
                << "Given transaction number " << txnNumber
                << " does not match any in-progress transactions. The active transaction number is "
                << o().activeTxnNumber,
            txnNumber == o().activeTxnNumber && !o().txnState.isInRetryableWriteMode());

    if (o().txnState.isInProgress() && !o().txnResourceStash) {
        // This indicates that the first command in the transaction failed but did not implicitly
        // abort the transaction. It is not safe to continue the transaction, in particular because
        // we have not saved the readConcern from the first statement of the transaction. Mark the
        // transaction as active here, since _abortTransactionOnSession() will assume we are
        // aborting an active transaction since there are no stashed resources.
        {
            stdx::lock_guard<Client> lk(*opCtx->getClient());
            o(lk).transactionMetricsObserver.onUnstash(
                ServerTransactionsMetrics::get(opCtx->getServiceContext()),
                opCtx->getServiceContext()->getTickSource());
        }
        _abortTransactionOnSession(opCtx);

        uasserted(
            ErrorCodes::NoSuchTransaction,
            str::stream()
                << "Transaction " << txnNumber
                << " has been aborted because an earlier command in this transaction failed.");
    }
    return;
}

void TransactionParticipant::Participant::_beginMultiDocumentTransaction(OperationContext* opCtx,
                                                                         TxnNumber txnNumber) {
    // Aborts any in-progress txns.
    _setNewTxnNumber(opCtx, txnNumber);
    p().autoCommit = false;

    stdx::lock_guard<Client> lk(*opCtx->getClient());
    o(lk).txnState.transitionTo(TransactionState::kInProgress);

    // Start tracking various transactions metrics.
    //
    // We measure the start time in both microsecond and millisecond resolution. The TickSource
    // provides microsecond resolution to record the duration of the transaction. The start "wall
    // clock" time can be considered an approximation to the microsecond measurement.
    auto now = opCtx->getServiceContext()->getPreciseClockSource()->now();
    auto tickSource = opCtx->getServiceContext()->getTickSource();

    o(lk).transactionExpireDate = now + Seconds(gTransactionLifetimeLimitSeconds.load());

    o(lk).transactionMetricsObserver.onStart(
        ServerTransactionsMetrics::get(opCtx->getServiceContext()),
        *p().autoCommit,
        tickSource,
        now,
        *o().transactionExpireDate);
    invariant(p().transactionOperations.empty());
}

void TransactionParticipant::Participant::beginOrContinue(OperationContext* opCtx,
                                                          TxnNumber txnNumber,
                                                          boost::optional<bool> autocommit,
                                                          boost::optional<bool> startTransaction) {
    // Make sure we are still a primary. We need to hold on to the RSTL through the end of this
    // method, as we otherwise risk stepping down in the interim and incorrectly updating the
    // transaction number, which can abort active transactions.
    repl::ReplicationStateTransitionLockGuard rstl(opCtx, MODE_IX);
    if (opCtx->writesAreReplicated()) {
        auto replCoord = repl::ReplicationCoordinator::get(opCtx);
        uassert(ErrorCodes::NotMaster,
                "Not primary so we cannot begin or continue a transaction",
                replCoord->canAcceptWritesForDatabase(opCtx, "admin"));
        // Disallow multi-statement transactions on shard servers that have
        // writeConcernMajorityJournalDefault=false unless enableTestCommands=true. But allow
        // retryable writes (autocommit == boost::none).
        uassert(ErrorCodes::OperationNotSupportedInTransaction,
                "Transactions are not allowed on shard servers when "
                "writeConcernMajorityJournalDefault=false",
                replCoord->getWriteConcernMajorityShouldJournal() ||
                    serverGlobalParams.clusterRole != ClusterRole::ShardServer || !autocommit ||
                    getTestCommandsEnabled());
    }

    uassert(ErrorCodes::TransactionTooOld,
            str::stream() << "Cannot start transaction " << txnNumber << " on session "
                          << _sessionId() << " because a newer transaction " << o().activeTxnNumber
                          << " has already started.",
            txnNumber >= o().activeTxnNumber);

    // Requests without an autocommit field are interpreted as retryable writes. They cannot specify
    // startTransaction, which is verified earlier when parsing the request.
    if (!autocommit) {
        invariant(!startTransaction);
        _beginOrContinueRetryableWrite(opCtx, txnNumber);
        return;
    }

    // Attempt to continue a multi-statement transaction. In this case, it is required that
    // autocommit be given as an argument on the request, and currently it can only be false, which
    // is verified earlier when parsing the request.
    invariant(*autocommit == false);
    invariant(opCtx->inMultiDocumentTransaction());

    if (!startTransaction) {
        _continueMultiDocumentTransaction(opCtx, txnNumber);
        return;
    }

    // Attempt to start a multi-statement transaction, which requires startTransaction be given as
    // an argument on the request. The 'startTransaction' argument currently can only be specified
    // as true, which is verified earlier, when parsing the request.
    invariant(*startTransaction);

    if (txnNumber == o().activeTxnNumber) {
        // Servers in a sharded cluster can start a new transaction at the active transaction number
        // to allow internal retries by routers on re-targeting errors, like
        // StaleShard/DatabaseVersion or SnapshotTooOld.
        uassert(ErrorCodes::ConflictingOperationInProgress,
                "Only servers in a sharded cluster can start a new transaction at the active "
                "transaction number",
                serverGlobalParams.clusterRole != ClusterRole::None);

        // The active transaction number can only be reused if:
        // 1. The transaction participant is in retryable write mode and has not yet executed a
        // retryable write, or
        // 2. A transaction is aborted and has not been involved in a two phase commit.
        //
        // Assuming routers target primaries in increasing order of term and in the absence of
        // byzantine messages, this check should never fail.
        const auto restartableStates =
            TransactionState::kNone | TransactionState::kAbortedWithoutPrepare;
        uassert(50911,
                str::stream() << "Cannot start a transaction at given transaction number "
                              << txnNumber << " a transaction with the same number is in state "
                              << o().txnState,
                o().txnState.isInSet(restartableStates));
    }

    _beginMultiDocumentTransaction(opCtx, txnNumber);
}

void TransactionParticipant::Participant::beginOrContinueTransactionUnconditionally(
    OperationContext* opCtx, TxnNumber txnNumber) {
    invariant(opCtx->inMultiDocumentTransaction());

    // We don't check or fetch any on-disk state, so treat the transaction as 'valid' for the
    // purposes of this method and continue the transaction unconditionally
    p().isValid = true;

    if (o().activeTxnNumber != txnNumber) {
        _beginMultiDocumentTransaction(opCtx, txnNumber);
    }

    // Assume we need to write an abort if we abort this transaction.  This method is called only
    // on secondaries (in which case we never write anything) and when a new primary knows about
    // an in-progress transaction.  If a new primary knows about an in-progress transaction, it
    // needs an abort oplog entry to be written if aborted (because the new primary could not
    // have found out if there wasn't an oplog entry for the new primary).
    p().needToWriteAbortEntry = true;
}

SharedSemiFuture<void> TransactionParticipant::Participant::onExitPrepare() const {
    if (!o().txnState._exitPreparePromise) {
        // The participant is not in prepare, so just return a ready future.
        return Future<void>::makeReady();
    }

    // The participant is in prepare, so return a future that will be signaled when the participant
    // transitions out of prepare.
    return o().txnState._exitPreparePromise->getFuture();
}

void TransactionParticipant::Participant::_setReadSnapshot(OperationContext* opCtx,
                                                           repl::ReadConcernArgs readConcernArgs) {
    if (readConcernArgs.getArgsAtClusterTime()) {
        // Read concern code should have already set the timestamp on the recovery unit.
        const auto readTimestamp = readConcernArgs.getArgsAtClusterTime()->asTimestamp();
        const auto ruTs = opCtx->recoveryUnit()->getPointInTimeReadTimestamp();
        invariant(readTimestamp == ruTs,
                  "readTimestamp: {}, pointInTime: {}"_format(readTimestamp.toString(),
                                                              ruTs ? ruTs->toString() : "none"));

        stdx::lock_guard<Client> lk(*opCtx->getClient());
        o(lk).transactionMetricsObserver.onChooseReadTimestamp(readTimestamp);
    } else if (readConcernArgs.getLevel() == repl::ReadConcernLevel::kSnapshotReadConcern) {
        // For transactions with read concern level specified as 'snapshot', we will use
        // 'kAllDurableSnapshot' which ensures a snapshot with no 'holes'; that is, it is a state
        // of the system that could be reconstructed from the oplog.
        opCtx->recoveryUnit()->setTimestampReadSource(
            RecoveryUnit::ReadSource::kAllDurableSnapshot);

        const auto readTimestamp =
            repl::StorageInterface::get(opCtx)->getPointInTimeReadTimestamp(opCtx);
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        o(lk).transactionMetricsObserver.onChooseReadTimestamp(readTimestamp);
    } else {
        // For transactions with read concern level specified as 'local' or 'majority', we will use
        // 'kNoTimestamp' which gives us the most recent snapshot.  This snapshot may reflect oplog
        // 'holes' from writes earlier than the last applied write which have not yet completed.
        // Using 'kNoTimestamp' ensures that transactions with mode 'local' are always able to read
        // writes from earlier transactions with mode 'local' on the same connection.
        opCtx->recoveryUnit()->setTimestampReadSource(RecoveryUnit::ReadSource::kNoTimestamp);
    }

    opCtx->recoveryUnit()->preallocateSnapshot();
}

TransactionParticipant::OplogSlotReserver::OplogSlotReserver(OperationContext* opCtx,
                                                             int numSlotsToReserve)
    : _opCtx(opCtx), _globalLock(opCtx, MODE_IX) {
    // Stash the transaction on the OperationContext on the stack. At the end of this function it
    // will be unstashed onto the OperationContext.
    TransactionParticipant::SideTransactionBlock sideTxn(opCtx);

    // Begin a new WUOW and reserve a slot in the oplog.
    WriteUnitOfWork wuow(opCtx);
    auto oplogInfo = repl::LocalOplogInfo::get(opCtx);
    _oplogSlots = oplogInfo->getNextOpTimes(opCtx, numSlotsToReserve);

    // Release the WUOW state since this WUOW is no longer in use.
    wuow.release();

    // We must lock the Client to change the Locker on the OperationContext.
    stdx::lock_guard<Client> lk(*opCtx->getClient());
    // Save the RecoveryUnit from the new transaction and replace it with an empty one.
    _recoveryUnit = opCtx->releaseRecoveryUnit();
    opCtx->setRecoveryUnit(std::unique_ptr<RecoveryUnit>(
                               opCtx->getServiceContext()->getStorageEngine()->newRecoveryUnit()),
                           WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork);

    // End two-phase locking on locker manually since the WUOW has been released.
    _opCtx->lockState()->endWriteUnitOfWork();
}

TransactionParticipant::OplogSlotReserver::~OplogSlotReserver() {
    if (MONGO_unlikely(hangBeforeReleasingTransactionOplogHole.shouldFail())) {
        log()
            << "transaction - hangBeforeReleasingTransactionOplogHole fail point enabled. Blocking "
               "until fail point is disabled.";
        hangBeforeReleasingTransactionOplogHole.pauseWhileSet();
    }

    // If the constructor did not complete, we do not attempt to abort the units of work.
    if (_recoveryUnit) {
        // We should be at WUOW nesting level 1, only the top level WUOW for the oplog reservation
        // side transaction.
        _recoveryUnit->abortUnitOfWork();
    }

    // After releasing the oplog hole, the all_durable timestamp can advance past this oplog hole,
    // if there are no other open holes. Check if we can advance the stable timestamp any further
    // since a majority write may be waiting on the stable timestamp to advance beyond this oplog
    // hole to acknowledge the write to the user.
    auto replCoord = repl::ReplicationCoordinator::get(_opCtx);
    replCoord->attemptToAdvanceStableTimestamp();
}

TransactionParticipant::TxnResources::TxnResources(WithLock wl,
                                                   OperationContext* opCtx,
                                                   StashStyle stashStyle) noexcept {
    // We must hold the Client lock to change the Locker on the OperationContext. Hence the
    // WithLock.

    _ruState = opCtx->getWriteUnitOfWork()->release();
    opCtx->setWriteUnitOfWork(nullptr);

    _locker = opCtx->swapLockState(std::make_unique<LockerImpl>());
    // Inherit the locking setting from the original one.
    opCtx->lockState()->setShouldConflictWithSecondaryBatchApplication(
        _locker->shouldConflictWithSecondaryBatchApplication());
    _locker->releaseTicket();
    _locker->unsetThreadId();
    if (opCtx->getLogicalSessionId()) {
        _locker->setDebugInfo("lsid: " + opCtx->getLogicalSessionId()->toBSON().toString());
    }

    // On secondaries, we yield the locks for transactions.
    if (stashStyle == StashStyle::kSecondary) {
        _lockSnapshot = std::make_unique<Locker::LockSnapshot>();
        // Transactions have at least a global IX lock. Invariant that we have something to release.
        invariant(_locker->releaseWriteUnitOfWorkAndUnlock(_lockSnapshot.get()));
    }

    // This thread must still respect the transaction lock timeout, since it can prevent the
    // transaction from making progress.
    auto maxTransactionLockMillis = gMaxTransactionLockRequestTimeoutMillis.load();
    if (stashStyle == StashStyle::kPrimary && maxTransactionLockMillis >= 0) {
        opCtx->lockState()->setMaxLockTimeout(Milliseconds(maxTransactionLockMillis));
    }

    // On secondaries, max lock timeout must not be set.
    invariant(!(stashStyle == StashStyle::kSecondary && opCtx->lockState()->hasMaxLockTimeout()));

    _recoveryUnit = opCtx->releaseRecoveryUnit();
    opCtx->setRecoveryUnit(std::unique_ptr<RecoveryUnit>(
                               opCtx->getServiceContext()->getStorageEngine()->newRecoveryUnit()),
                           WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork);

    _readConcernArgs = repl::ReadConcernArgs::get(opCtx);
}

TransactionParticipant::TxnResources::~TxnResources() {
    if (!_released && _recoveryUnit) {
        // This should only be reached when aborting a transaction that isn't active, i.e.
        // when starting a new transaction before completing an old one.  So we should
        // be at WUOW nesting level 1 (only the top level WriteUnitOfWork).
        _recoveryUnit->abortUnitOfWork();
        // If locks are not yielded, release them.
        if (!_lockSnapshot) {
            _locker->endWriteUnitOfWork();
        }
        invariant(!_locker->inAWriteUnitOfWork());
    }
}

void TransactionParticipant::TxnResources::release(OperationContext* opCtx) {
    // Perform operations that can fail the release before marking the TxnResources as released.
    auto onError = makeGuard([&] {
        // Release any locks acquired as part of lock restoration.
        if (_lockSnapshot) {
            // WUOW should be released before unlocking.
            Locker::WUOWLockSnapshot dummyWUOWLockInfo;
            _locker->releaseWriteUnitOfWork(&dummyWUOWLockInfo);

            Locker::LockSnapshot dummyLockInfo;
            _locker->saveLockStateAndUnlock(&dummyLockInfo);
        }
        // Release the ticket if acquired.
        // restoreWriteUnitOfWorkAndLock() can reacquire the ticket as well.
        if (_locker->getClientState() != Locker::ClientState::kInactive) {
            _locker->releaseTicket();
        }
    });

    // Restore locks if they are yielded.
    if (_lockSnapshot) {
        invariant(!_locker->isLocked());
        // opCtx is passed in to enable the restoration to be interrupted.
        _locker->restoreWriteUnitOfWorkAndLock(opCtx, *_lockSnapshot);
    }
    _locker->reacquireTicket(opCtx);

    if (MONGO_unlikely(restoreLocksFail.shouldFail())) {
        uasserted(ErrorCodes::LockTimeout, str::stream() << "Lock restore failed due to failpoint");
    }

    invariant(!_released);
    _released = true;

    // Successfully reacquired the locks and tickets.
    onError.dismiss();
    _lockSnapshot.reset(nullptr);

    // It is necessary to lock the client to change the Locker on the OperationContext.
    stdx::lock_guard<Client> lk(*opCtx->getClient());
    invariant(opCtx->lockState()->getClientState() == Locker::ClientState::kInactive);
    // We intentionally do not capture the return value of swapLockState(), which is just an empty
    // locker. At the end of the operation, if the transaction is not complete, we will stash the
    // operation context's locker and replace it with a new empty locker.
    opCtx->swapLockState(std::move(_locker));
    opCtx->lockState()->updateThreadIdToCurrentThread();

    auto oldState = opCtx->setRecoveryUnit(std::move(_recoveryUnit),
                                           WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork);
    invariant(oldState == WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork,
              str::stream() << "RecoveryUnit state was " << oldState);

    opCtx->setWriteUnitOfWork(WriteUnitOfWork::createForSnapshotResume(opCtx, _ruState));

    auto& readConcernArgs = repl::ReadConcernArgs::get(opCtx);
    readConcernArgs = _readConcernArgs;
}

TransactionParticipant::SideTransactionBlock::SideTransactionBlock(OperationContext* opCtx)
    : _opCtx(opCtx) {
    // Do nothing if we are already in a SideTransactionBlock. We can tell we are already in a
    // SideTransactionBlock because there is no top level write unit of work.
    if (!_opCtx->getWriteUnitOfWork()) {
        return;
    }

    // Release WUOW.
    _ruState = opCtx->getWriteUnitOfWork()->release();
    opCtx->setWriteUnitOfWork(nullptr);

    // Remember the locking state of WUOW, opt out two-phase locking, but don't release locks.
    opCtx->lockState()->releaseWriteUnitOfWork(&_WUOWLockSnapshot);

    // Release recovery unit, saving the recovery unit off to the side, keeping open the storage
    // transaction.
    _recoveryUnit = opCtx->releaseRecoveryUnit();
    opCtx->setRecoveryUnit(std::unique_ptr<RecoveryUnit>(
                               opCtx->getServiceContext()->getStorageEngine()->newRecoveryUnit()),
                           WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork);
}

TransactionParticipant::SideTransactionBlock::~SideTransactionBlock() {
    if (!_recoveryUnit) {
        return;
    }

    // Restore locker's state about WUOW.
    _opCtx->lockState()->restoreWriteUnitOfWork(_WUOWLockSnapshot);

    // Restore recovery unit.
    auto oldState = _opCtx->setRecoveryUnit(std::move(_recoveryUnit),
                                            WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork);
    invariant(oldState == WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork,
              str::stream() << "RecoveryUnit state was " << oldState);

    // Restore WUOW.
    _opCtx->setWriteUnitOfWork(WriteUnitOfWork::createForSnapshotResume(_opCtx, _ruState));
}

void TransactionParticipant::Participant::_stashActiveTransaction(OperationContext* opCtx) {
    if (p().inShutdown) {
        return;
    }

    invariant(o().activeTxnNumber == opCtx->getTxnNumber());

    stdx::lock_guard<Client> lk(*opCtx->getClient());
    {
        auto tickSource = opCtx->getServiceContext()->getTickSource();
        o(lk).transactionMetricsObserver.onStash(ServerTransactionsMetrics::get(opCtx), tickSource);
        o(lk).transactionMetricsObserver.onTransactionOperation(
            opCtx, CurOp::get(opCtx)->debug().additiveMetrics, o().txnState.isPrepared());
    }

    invariant(!o().txnResourceStash);
    auto stashStyle = opCtx->writesAreReplicated() ? TxnResources::StashStyle::kPrimary
                                                   : TxnResources::StashStyle::kSecondary;
    o(lk).txnResourceStash = TxnResources(lk, opCtx, stashStyle);
}


void TransactionParticipant::Participant::stashTransactionResources(OperationContext* opCtx) {
    if (opCtx->getClient()->isInDirectClient()) {
        return;
    }
    invariant(opCtx->getTxnNumber());

    if (o().txnState.isOpen()) {
        _stashActiveTransaction(opCtx);
    }
}

void TransactionParticipant::Participant::resetRetryableWriteState(OperationContext* opCtx) {
    if (opCtx->getClient()->isInDirectClient()) {
        return;
    }
    invariant(opCtx->getTxnNumber());
    stdx::lock_guard<Client> lk(*opCtx->getClient());
    if (o().txnState.isNone() && p().autoCommit == boost::none) {
        _resetRetryableWriteState();
    }
}

void TransactionParticipant::Participant::_releaseTransactionResourcesToOpCtx(
    OperationContext* opCtx, MaxLockTimeout maxLockTimeout, AcquireTicket acquireTicket) {
    // Transaction resources already exist for this transaction.  Transfer them from the
    // stash to the operation context.
    //
    // Because TxnResources::release must acquire the Client lock midway through, and because we
    // must hold the Client clock to mutate txnResourceStash, we jump through some hoops here to
    // move the TxnResources in txnResourceStash into a local variable that can be manipulated
    // without holding the Client lock.
    auto tempTxnResourceStash = [&]() noexcept {
        using std::swap;
        boost::optional<TxnResources> trs;
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        swap(trs, o(lk).txnResourceStash);
        return trs;
    }
    ();

    auto releaseOnError = makeGuard([&] {
        // Restore the lock resources back to transaction participant.
        using std::swap;
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        swap(o(lk).txnResourceStash, tempTxnResourceStash);
    });

    invariant(tempTxnResourceStash);
    auto stashLocker = tempTxnResourceStash->locker();
    invariant(stashLocker);

    if (maxLockTimeout == MaxLockTimeout::kNotAllowed) {
        stashLocker->unsetMaxLockTimeout();
    } else {
        // If maxTransactionLockRequestTimeoutMillis is set, then we will ensure no
        // future lock request waits longer than maxTransactionLockRequestTimeoutMillis
        // to acquire a lock. This is to avoid deadlocks and minimize non-transaction
        // operation performance degradations.
        auto maxTransactionLockMillis = gMaxTransactionLockRequestTimeoutMillis.load();
        if (maxTransactionLockMillis >= 0) {
            stashLocker->setMaxLockTimeout(Milliseconds(maxTransactionLockMillis));
        }
    }

    if (acquireTicket == AcquireTicket::kSkip) {
        stashLocker->skipAcquireTicket();
    }

    tempTxnResourceStash->release(opCtx);
    releaseOnError.dismiss();
}

void TransactionParticipant::Participant::unstashTransactionResources(OperationContext* opCtx,
                                                                      const std::string& cmdName) {
    invariant(!opCtx->getClient()->isInDirectClient());
    invariant(opCtx->getTxnNumber());

    // If this is not a multi-document transaction, there is nothing to unstash.
    if (o().txnState.isInRetryableWriteMode()) {
        invariant(!o().txnResourceStash);
        return;
    }

    _checkIsCommandValidWithTxnState(*opCtx->getTxnNumber(), cmdName);
    if (o().txnResourceStash) {
        MaxLockTimeout maxLockTimeout;
        // Default is we should acquire ticket.
        AcquireTicket acquireTicket{AcquireTicket::kNoSkip};

        if (opCtx->writesAreReplicated()) {
            // Primaries should respect the transaction lock timeout, since it can prevent
            // the transaction from making progress.
            maxLockTimeout = MaxLockTimeout::kAllowed;
            // commitTransaction and abortTransaction commands can skip ticketing mechanism as they
            // don't acquire any new storage resources (except writing to oplog) but they release
            // any claimed storage resources.
            // Prepared transactions should not acquire ticket. Else, it can deadlock with other
            // non-transactional operations that have exhausted the write tickets and are blocked on
            // them due to prepare or lock conflict.
            if (o().txnState.isPrepared() || cmdName == "commitTransaction" ||
                cmdName == "abortTransaction") {
                acquireTicket = AcquireTicket::kSkip;
            }
        } else {
            // Max lock timeout must not be set on secondaries, since secondary oplog application
            // cannot fail.
            maxLockTimeout = MaxLockTimeout::kNotAllowed;
        }

        _releaseTransactionResourcesToOpCtx(opCtx, maxLockTimeout, acquireTicket);
        stdx::lock_guard<Client> lg(*opCtx->getClient());
        o(lg).transactionMetricsObserver.onUnstash(ServerTransactionsMetrics::get(opCtx),
                                                   opCtx->getServiceContext()->getTickSource());
        return;
    }

    // If we have no transaction resources then we cannot be prepared. If we're not in progress,
    // we don't do anything else.
    invariant(!o().txnState.isPrepared());

    if (!o().txnState.isInProgress()) {
        // At this point we're either committed and this is a 'commitTransaction' command, or we
        // are in the process of committing.
        return;
    }

    // All locks of transactions must be acquired inside the global WUOW so that we can
    // yield and restore all locks on state transition. Otherwise, we'd have to remember
    // which locks are managed by WUOW.
    invariant(!opCtx->lockState()->isLocked());
    invariant(!opCtx->lockState()->isRSTLLocked());
    invariant(!opCtx->lockState()->inAWriteUnitOfWork());

    // Stashed transaction resources do not exist for this in-progress multi-document
    // transaction. Set up the transaction resources on the opCtx.
    opCtx->setWriteUnitOfWork(std::make_unique<WriteUnitOfWork>(opCtx));

    // If maxTransactionLockRequestTimeoutMillis is set, then we will ensure no
    // future lock request waits longer than maxTransactionLockRequestTimeoutMillis
    // to acquire a lock. This is to avoid deadlocks and minimize non-transaction
    // operation performance degradations.
    auto maxTransactionLockMillis = gMaxTransactionLockRequestTimeoutMillis.load();
    if (opCtx->writesAreReplicated() && maxTransactionLockMillis >= 0) {
        opCtx->lockState()->setMaxLockTimeout(Milliseconds(maxTransactionLockMillis));
    }

    // On secondaries, max lock timeout must not be set.
    invariant(opCtx->writesAreReplicated() || !opCtx->lockState()->hasMaxLockTimeout());

    // Storage engine transactions may be started in a lazy manner. By explicitly
    // starting here we ensure that a point-in-time snapshot is established during the
    // first operation of a transaction.
    //
    // Active transactions are protected by the locking subsystem, so we must always hold at least a
    // Global intent lock before starting a transaction.  We pessimistically acquire an intent
    // exclusive lock here because we might be doing writes in this transaction, and it is currently
    // not deadlock-safe to upgrade IS to IX.
    Lock::GlobalLock globalLock(opCtx, MODE_IX);

    // This begins the storage transaction and so we do it after acquiring the global lock.
    _setReadSnapshot(opCtx, repl::ReadConcernArgs::get(opCtx));

    // The Client lock must not be held when executing this failpoint as it will block currentOp
    // execution.
    if (MONGO_unlikely(hangAfterPreallocateSnapshot.shouldFail())) {
        CurOpFailpointHelpers::waitWhileFailPointEnabled(
            &hangAfterPreallocateSnapshot, opCtx, "hangAfterPreallocateSnapshot");
    }

    {
        stdx::lock_guard<Client> lg(*opCtx->getClient());
        o(lg).transactionMetricsObserver.onUnstash(ServerTransactionsMetrics::get(opCtx),
                                                   opCtx->getServiceContext()->getTickSource());
    }
}

void TransactionParticipant::Participant::refreshLocksForPreparedTransaction(
    OperationContext* opCtx, bool yieldLocks) {
    // The opCtx will be used to swap locks, so it cannot hold any lock.
    invariant(!opCtx->lockState()->isRSTLLocked());
    invariant(!opCtx->lockState()->isLocked());

    // The node must have txn resource.
    invariant(o().txnResourceStash);
    invariant(o().txnState.isPrepared());

    // Lock and Ticket reacquisition of a prepared transaction should not fail for
    // state transitions (step up/step down).
    _releaseTransactionResourcesToOpCtx(opCtx, MaxLockTimeout::kNotAllowed, AcquireTicket::kNoSkip);

    // Snapshot transactions don't conflict with PBWM lock on both primary and secondary.
    invariant(!opCtx->lockState()->shouldConflictWithSecondaryBatchApplication());

    // Transfer the txn resource back from the operation context to the stash.
    auto stashStyle =
        yieldLocks ? TxnResources::StashStyle::kSecondary : TxnResources::StashStyle::kPrimary;
    stdx::lock_guard<Client> lk(*opCtx->getClient());
    o(lk).txnResourceStash = TxnResources(lk, opCtx, stashStyle);
}

Timestamp TransactionParticipant::Participant::prepareTransaction(
    OperationContext* opCtx, boost::optional<repl::OpTime> prepareOptime) {

    auto abortGuard = makeGuard([&] {
        // Prepare transaction on secondaries should always succeed.
        invariant(!prepareOptime);

        try {
            // This shouldn't cause deadlocks with other prepared txns, because the acquisition
            // of RSTL lock inside abortTransaction will be no-op since we already have it.
            // This abortGuard gets dismissed before we release the RSTL while transitioning to
            // prepared.
            UninterruptibleLockGuard noInterrupt(opCtx->lockState());
            abortTransaction(opCtx);
        } catch (...) {
            // It is illegal for aborting a prepared transaction to fail for any reason, so we crash
            // instead.
            severe() << "Caught exception during abort of prepared transaction "
                     << opCtx->getTxnNumber() << " on " << _sessionId().toBSON() << ": "
                     << exceptionToStatus();
            std::terminate();
        }
    });

    auto& completedTransactionOperations = retrieveCompletedTransactionOperations(opCtx);

    // Ensure that no transaction operations were done against temporary collections.
    // Transactions should not operate on temporary collections because they are for internal use
    // only and are deleted on both repl stepup and server startup.

    // Create a set of collection UUIDs through which to iterate, so that we do not recheck the same
    // collection multiple times: it is a costly check.
    stdx::unordered_set<UUID, UUID::Hash> transactionOperationUuids;
    for (const auto& transactionOp : completedTransactionOperations) {
        transactionOperationUuids.insert(transactionOp.getUuid().get());
    }
    for (const auto& uuid : transactionOperationUuids) {
        auto collection = CollectionCatalog::get(opCtx).lookupCollectionByUUID(uuid);
        uassert(ErrorCodes::OperationNotSupportedInTransaction,
                str::stream() << "prepareTransaction failed because one of the transaction "
                                 "operations was done against a temporary collection '"
                              << collection->ns() << "'.",
                !collection->isTemporary(opCtx));
    }

    boost::optional<OplogSlotReserver> oplogSlotReserver;
    OplogSlot prepareOplogSlot;
    {
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        // This check is necessary in order to avoid a race where a session with an active (but not
        // prepared) transaction is killed, but it still ends up in the prepared state
        opCtx->checkForInterrupt();
        o(lk).txnState.transitionTo(TransactionState::kPrepared);
    }
    std::vector<OplogSlot> reservedSlots;
    if (prepareOptime) {
        // On secondary, we just prepare the transaction and discard the buffered ops.
        prepareOplogSlot = OplogSlot(*prepareOptime);
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        o(lk).prepareOpTime = *prepareOptime;
        reservedSlots.push_back(prepareOplogSlot);
    } else {
        // Even if the prepared transaction contained no statements, we always reserve at least
        // 1 oplog slot for the prepare oplog entry.
        const auto numSlotsToReserve = retrieveCompletedTransactionOperations(opCtx).size();
        oplogSlotReserver.emplace(opCtx, std::max(1, static_cast<int>(numSlotsToReserve)));
        invariant(oplogSlotReserver->getSlots().size() >= 1);
        prepareOplogSlot = oplogSlotReserver->getLastSlot();
        reservedSlots = oplogSlotReserver->getSlots();
        invariant(o().prepareOpTime.isNull(),
                  str::stream() << "This transaction has already reserved a prepareOpTime at: "
                                << o().prepareOpTime.toString());

        {
            stdx::lock_guard<Client> lk(*opCtx->getClient());
            o(lk).prepareOpTime = prepareOplogSlot;
        }

        if (MONGO_unlikely(hangAfterReservingPrepareTimestamp.shouldFail())) {
            // This log output is used in js tests so please leave it.
            log() << "transaction - hangAfterReservingPrepareTimestamp fail point "
                     "enabled. Blocking until fail point is disabled. Prepare OpTime: "
                  << prepareOplogSlot;
            hangAfterReservingPrepareTimestamp.pauseWhileSet();
        }
    }
    opCtx->recoveryUnit()->setPrepareTimestamp(prepareOplogSlot.getTimestamp());
    opCtx->getWriteUnitOfWork()->prepare();
    p().needToWriteAbortEntry = true;
    opCtx->getServiceContext()->getOpObserver()->onTransactionPrepare(
        opCtx, reservedSlots, completedTransactionOperations);

    abortGuard.dismiss();

    {
        const auto ticks = opCtx->getServiceContext()->getTickSource()->getTicks();
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        o(lk).transactionMetricsObserver.onPrepare(ServerTransactionsMetrics::get(opCtx), ticks);

        // Ensure the lastWriteOpTime is set. This is needed so that we can correctly assign the
        // prevOpTime for commit and abort oplog entries if a failover happens after the prepare.
        // This value is updated in _registerCacheUpdateOnCommit, but only on primaries. We
        // update the lastWriteOpTime here so that it is also available to secondaries. We can
        // count on it to persist since we never invalidate prepared transactions.
        o(lk).lastWriteOpTime = prepareOplogSlot;
    }

    if (MONGO_unlikely(hangAfterSettingPrepareStartTime.shouldFail())) {
        log() << "transaction - hangAfterSettingPrepareStartTime fail point enabled. Blocking "
                 "until fail point is disabled.";
        hangAfterSettingPrepareStartTime.pauseWhileSet();
    }

    // We unlock the RSTL to allow prepared transactions to survive state transitions. This should
    // be the last thing we do since a state transition may happen immediately after releasing the
    // RSTL.
    const bool unlocked = opCtx->lockState()->unlockRSTLforPrepare();
    invariant(unlocked);

    return prepareOplogSlot.getTimestamp();
}

void TransactionParticipant::Participant::setPrepareOpTimeForRecovery(OperationContext* opCtx,
                                                                      repl::OpTime prepareOpTime) {
    stdx::lock_guard<Client> lk(*opCtx->getClient());
    o(lk).recoveryPrepareOpTime = prepareOpTime;
}

const repl::OpTime TransactionParticipant::Participant::getPrepareOpTimeForRecovery() const {
    return o().recoveryPrepareOpTime;
}

void TransactionParticipant::Participant::addTransactionOperation(
    OperationContext* opCtx, const repl::ReplOperation& operation) {

    // Ensure that we only ever add operations to an in progress transaction.
    invariant(o().txnState.isInProgress(), str::stream() << "Current state: " << o().txnState);

    invariant(p().autoCommit && !*p().autoCommit && o().activeTxnNumber != kUninitializedTxnNumber);
    invariant(opCtx->lockState()->inAWriteUnitOfWork());
    p().transactionOperations.push_back(operation);
    p().transactionOperationBytes += repl::OplogEntry::getDurableReplOperationSize(operation);

    auto transactionSizeLimitBytes = gTransactionSizeLimitBytes.load();
    uassert(ErrorCodes::TransactionTooLarge,
            str::stream() << "Total size of all transaction operations must be less than "
                          << "server parameter 'transactionSizeLimitBytes' = "
                          << transactionSizeLimitBytes,
            p().transactionOperationBytes <= static_cast<size_t>(transactionSizeLimitBytes));
}

std::vector<repl::ReplOperation>&
TransactionParticipant::Participant::retrieveCompletedTransactionOperations(
    OperationContext* opCtx) {

    // Ensure that we only ever retrieve a transaction's completed operations when in progress
    // or prepared.
    invariant(o().txnState.isInSet(TransactionState::kInProgress | TransactionState::kPrepared),
              str::stream() << "Current state: " << o().txnState);

    return p().transactionOperations;
}

TxnResponseMetadata TransactionParticipant::Participant::getResponseMetadata() {
    // Currently the response metadata only contains a single field, which is whether or not the
    // transaction is read-only so far.
    return {o().txnState.isInSet(TransactionState::kInProgress) &&
            p().transactionOperations.empty()};
}

void TransactionParticipant::Participant::clearOperationsInMemory(OperationContext* opCtx) {
    // Ensure that we only ever end a prepared or in-progress transaction.
    invariant(o().txnState.isInSet(TransactionState::kPrepared | TransactionState::kInProgress),
              str::stream() << "Current state: " << o().txnState);
    invariant(p().autoCommit);
    p().transactionOperationBytes = 0;
    p().transactionOperations.clear();
}

void TransactionParticipant::Participant::commitUnpreparedTransaction(OperationContext* opCtx) {
    uassert(ErrorCodes::InvalidOptions,
            "commitTransaction must provide commitTimestamp to prepared transaction.",
            !o().txnState.isPrepared());

    auto txnOps = retrieveCompletedTransactionOperations(opCtx);
    auto opObserver = opCtx->getServiceContext()->getOpObserver();
    invariant(opObserver);

    opObserver->onUnpreparedTransactionCommit(opCtx, txnOps);

    // Read-only transactions with all read concerns must wait for any data they read to be majority
    // committed. For local read concern this is to match majority read concern. For both local and
    // majority read concerns we do an untimestamped read, so we have no read timestamp to wait on.
    // Instead, we write a noop which is guaranteed to have a greater OpTime than any writes we
    // read.
    //
    // TODO (SERVER-41165): Snapshot read concern should wait on the read timestamp instead.
    auto wc = opCtx->getWriteConcern();
    auto needsNoopWrite = txnOps.empty() && !opCtx->getWriteConcern().usedDefault;

    clearOperationsInMemory(opCtx);

    try {
        // Once committing we cannot throw an exception.
        UninterruptibleLockGuard noInterrupt(opCtx->lockState());
        _commitStorageTransaction(opCtx);
        _finishCommitTransaction(opCtx);
    } catch (...) {
        // It is illegal for committing a transaction to fail for any reason, other than an
        // invalid command, so we crash instead.
        severe() << "Caught exception during commit of unprepared transaction "
                 << opCtx->getTxnNumber() << " on " << _sessionId().toBSON() << ": "
                 << exceptionToStatus();
        std::terminate();
    }

    if (needsNoopWrite) {
        performNoopWrite(
            opCtx, str::stream() << "read-only transaction with writeConcern " << wc.toBSON());
    }
}

void TransactionParticipant::Participant::commitPreparedTransaction(
    OperationContext* opCtx,
    Timestamp commitTimestamp,
    boost::optional<repl::OpTime> commitOplogEntryOpTime) {
    // A correctly functioning coordinator could hit this uassert. This could happen if this
    // participant shard failed over and the new primary majority committed prepare without this
    // node in its majority. The coordinator could legally send commitTransaction with a
    // commitTimestamp to this shard but target the old primary (this node) that has yet to prepare
    // the transaction. We uassert since this node cannot commit the transaction.
    if (!o().txnState.isPrepared()) {
        uasserted(ErrorCodes::InvalidOptions,
                  "commitTransaction cannot provide commitTimestamp to unprepared transaction.");
    }

    // Re-acquire the RSTL to prevent state transitions while committing the transaction. When the
    // transaction was prepared, we dropped the RSTL. We do not need to reacquire the PBWM because
    // if we're not the primary we will uassert anyways.
    repl::ReplicationStateTransitionLockGuard rstl(opCtx, MODE_IX);

    // Prepared transactions cannot hold the RSTL, or else they will deadlock with state
    // transitions. If we do not commit the transaction we must unlock the RSTL explicitly so two
    // phase locking doesn't hold onto it.
    auto unlockGuard = makeGuard([&] { invariant(opCtx->lockState()->unlockRSTLforPrepare()); });

    const auto replCoord = repl::ReplicationCoordinator::get(opCtx);

    if (opCtx->writesAreReplicated()) {
        uassert(ErrorCodes::NotMaster,
                "Not primary so we cannot commit a prepared transaction",
                replCoord->canAcceptWritesForDatabase(opCtx, "admin"));
    }

    uassert(
        ErrorCodes::InvalidOptions, "'commitTimestamp' cannot be null", !commitTimestamp.isNull());

    const auto prepareTimestamp = o().prepareOpTime.getTimestamp();

    uassert(ErrorCodes::InvalidOptions,
            "'commitTimestamp' must be greater than or equal to 'prepareTimestamp'",
            commitTimestamp >= prepareTimestamp);

    if (!commitOplogEntryOpTime) {
        // A correctly functioning coordinator could hit this uassert. This could happen if this
        // participant shard failed over and the new primary majority committed prepare but has yet
        // to communicate that to this node. The coordinator could legally send commitTransaction
        // with a commitTimestamp to this shard but target the old primary (this node) that does not
        // yet know prepare is majority committed. We uassert since the commit oplog entry would be
        // written in an old term and be guaranteed to roll back. This makes it easier to write
        // correct tests, consider fewer participant commit cases, and catch potential bugs since
        // hitting this uassert correctly is unlikely.
        uassert(ErrorCodes::InvalidOptions,
                "commitTransaction for a prepared transaction cannot be run before its prepare "
                "oplog entry has been majority committed",
                replCoord->getLastCommittedOpTime().getTimestamp() >= prepareTimestamp ||
                    MONGO_unlikely(skipCommitTxnCheckPrepareMajorityCommitted.shouldFail()));
    }

    try {
        // We can no longer uassert without terminating.
        unlockGuard.dismiss();

        // Once entering "committing with prepare" we cannot throw an exception.
        UninterruptibleLockGuard noInterrupt(opCtx->lockState());
        opCtx->recoveryUnit()->setCommitTimestamp(commitTimestamp);

        // On secondary, we generate a fake empty oplog slot, since it's not used by opObserver.
        OplogSlot commitOplogSlot;
        boost::optional<OplogSlotReserver> oplogSlotReserver;

        // On primary, we reserve an oplog slot before committing the transaction so that no
        // writes that are causally related to the transaction commit enter the oplog at a
        // timestamp earlier than the commit oplog entry.
        if (opCtx->writesAreReplicated()) {
            invariant(!commitOplogEntryOpTime);
            oplogSlotReserver.emplace(opCtx);
            commitOplogSlot = oplogSlotReserver->getLastSlot();
            invariant(commitOplogSlot.getTimestamp() >= commitTimestamp,
                      str::stream() << "Commit oplog entry must be greater than or equal to commit "
                                       "timestamp due to causal consistency. commit timestamp: "
                                    << commitTimestamp.toBSON()
                                    << ", commit oplog entry optime: " << commitOplogSlot.toBSON());
        } else {
            // We always expect a non-null commitOplogEntryOpTime to be passed in on secondaries
            // in order to set the finishOpTime.
            invariant(commitOplogEntryOpTime);
        }

        // We must have a lastWriteOpTime set, as that will be used for the prevOpTime on the oplog
        // entry.
        invariant(!o().lastWriteOpTime.isNull());

        // If commitOplogEntryOpTime is a nullopt, then we grab the OpTime from the commitOplogSlot
        // which will only be set if we are primary. Otherwise, the commitOplogEntryOpTime must have
        // been passed in during secondary oplog application.
        auto commitOplogSlotOpTime = commitOplogEntryOpTime.value_or(commitOplogSlot);
        opCtx->recoveryUnit()->setDurableTimestamp(commitOplogSlotOpTime.getTimestamp());

        _commitStorageTransaction(opCtx);

        auto opObserver = opCtx->getServiceContext()->getOpObserver();
        invariant(opObserver);

        // Once the transaction is committed, the oplog entry must be written.
        opObserver->onPreparedTransactionCommit(
            opCtx, commitOplogSlot, commitTimestamp, retrieveCompletedTransactionOperations(opCtx));

        clearOperationsInMemory(opCtx);

        _finishCommitTransaction(opCtx);
    } catch (...) {
        // It is illegal for committing a prepared transaction to fail for any reason, other than an
        // invalid command, so we crash instead.
        severe() << "Caught exception during commit of prepared transaction "
                 << opCtx->getTxnNumber() << " on " << _sessionId().toBSON() << ": "
                 << exceptionToStatus();
        std::terminate();
    }
}

void TransactionParticipant::Participant::_commitStorageTransaction(OperationContext* opCtx) try {
    invariant(opCtx->getWriteUnitOfWork());
    invariant(opCtx->lockState()->isRSTLLocked());
    opCtx->getWriteUnitOfWork()->commit();
    opCtx->setWriteUnitOfWork(nullptr);

    // We must clear the recovery unit and locker for the 'config.transactions' and oplog entry
    // writes.
    opCtx->setRecoveryUnit(std::unique_ptr<RecoveryUnit>(
                               opCtx->getServiceContext()->getStorageEngine()->newRecoveryUnit()),
                           WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork);

    opCtx->lockState()->unsetMaxLockTimeout();
} catch (...) {
    // It is illegal for committing a storage-transaction to fail so we crash instead.
    severe() << "Caught exception during commit of storage-transaction " << opCtx->getTxnNumber()
             << " on " << _sessionId().toBSON() << ": " << exceptionToStatus();
    std::terminate();
}

void TransactionParticipant::Participant::_finishCommitTransaction(OperationContext* opCtx) {
    {
        auto tickSource = opCtx->getServiceContext()->getTickSource();
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        o(lk).txnState.transitionTo(TransactionState::kCommitted);

        o(lk).transactionMetricsObserver.onCommit(ServerTransactionsMetrics::get(opCtx),
                                                  tickSource,
                                                  &Top::get(getGlobalServiceContext()));
        o(lk).transactionMetricsObserver.onTransactionOperation(
            opCtx, CurOp::get(opCtx)->debug().additiveMetrics, o().txnState.isPrepared());
    }
    // We must clear the recovery unit and locker so any post-transaction writes can run without
    // transactional settings such as a read timestamp.
    _cleanUpTxnResourceOnOpCtx(opCtx, TerminationCause::kCommitted);
}

void TransactionParticipant::Participant::shutdown(OperationContext* opCtx) {
    stdx::lock_guard<Client> lock(*opCtx->getClient());

    p().inShutdown = true;
    o(lock).txnResourceStash = boost::none;
}

bool TransactionParticipant::Observer::expiredAsOf(Date_t when) const {
    return o().txnState.isInProgress() && o().transactionExpireDate &&
        o().transactionExpireDate < when;
}

void TransactionParticipant::Participant::abortTransaction(OperationContext* opCtx) {
    // Normally, absence of a transaction resource stash indicates an inactive transaction.
    // However, in the case of a failed "unstash", an active transaction may exist without a stash
    // and be killed externally.  In that case, the opCtx will not have a transaction number.
    if (o().txnResourceStash || !opCtx->getTxnNumber()) {
        // Aborting an inactive transaction.
        _abortTransactionOnSession(opCtx);
    } else if (o().txnState.isPrepared()) {
        _abortActivePreparedTransaction(opCtx);
    } else {
        _abortActiveTransaction(opCtx, TransactionState::kInProgress);
    }
}

void TransactionParticipant::Participant::_abortActivePreparedTransaction(OperationContext* opCtx) {
    // Re-acquire the RSTL to prevent state transitions while aborting the transaction. Since the
    // transaction was prepared, we dropped it on preparing the transaction. We do not need to
    // reacquire the PBWM because if we're not the primary we will uassert anyways.
    repl::ReplicationStateTransitionLockGuard rstl(opCtx, MODE_IX);

    // Prepared transactions cannot hold the RSTL, or else they will deadlock with state
    // transitions. If we do not abort the transaction we must unlock the RSTL explicitly so two
    // phase locking doesn't hold onto it. Unlocking the RSTL may be a noop if it's already
    // unlocked.
    ON_BLOCK_EXIT([&] { opCtx->lockState()->unlockRSTLforPrepare(); });

    if (opCtx->writesAreReplicated()) {
        auto replCoord = repl::ReplicationCoordinator::get(opCtx);
        uassert(ErrorCodes::NotMaster,
                "Not primary so we cannot abort a prepared transaction",
                replCoord->canAcceptWritesForDatabase(opCtx, "admin"));
    }

    _abortActiveTransaction(opCtx, TransactionState::kPrepared);
}

void TransactionParticipant::Participant::_abortActiveTransaction(
    OperationContext* opCtx, TransactionState::StateSet expectedStates) {
    invariant(!o().txnResourceStash);

    if (!o().txnState.isInRetryableWriteMode()) {
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        o(lk).transactionMetricsObserver.onTransactionOperation(
            opCtx, CurOp::get(opCtx)->debug().additiveMetrics, o().txnState.isPrepared());
    }

    auto opObserver = opCtx->getServiceContext()->getOpObserver();
    invariant(opObserver);

    const bool needToWriteAbortEntry = opCtx->writesAreReplicated() && p().needToWriteAbortEntry;
    if (needToWriteAbortEntry) {
        // We reserve an oplog slot before aborting the transaction so that no writes that are
        // causally related to the transaction abort enter the oplog at a timestamp earlier than the
        // abort oplog entry.
        OplogSlotReserver oplogSlotReserver(opCtx);

        // Clean up the transaction resources on the opCtx even if the transaction resources on the
        // session were not aborted. This actually aborts the storage-transaction.
        _cleanUpTxnResourceOnOpCtx(opCtx, TerminationCause::kAborted);

        try {
            // If we need to write an abort oplog entry, this function can no longer be interrupted.
            UninterruptibleLockGuard noInterrupt(opCtx->lockState());

            // Write the abort oplog entry. This must be done after aborting the storage
            // transaction, so that the lock state is reset, and there is no max lock timeout on the
            // locker.
            opObserver->onTransactionAbort(opCtx, oplogSlotReserver.getLastSlot());

            _finishAbortingActiveTransaction(opCtx, expectedStates);
        } catch (...) {
            // It is illegal for aborting a transaction that must write an abort oplog entry to fail
            // after aborting the storage transaction, so we crash instead.
            severe()
                << "Caught exception during abort of transaction that must write abort oplog entry "
                << opCtx->getTxnNumber() << " on " << _sessionId().toBSON() << ": "
                << exceptionToStatus();
            std::terminate();
        }
    } else {
        // Clean up the transaction resources on the opCtx even if the transaction resources on the
        // session were not aborted. This actually aborts the storage-transaction.
        //
        // These functions are allowed to throw. We are not writing an oplog entry, so the only risk
        // is not cleaning up some internal TransactionParticipant state, updating metrics, or
        // logging the end of the transaction. That will either be cleaned up in the
        // ServiceEntryPoint's abortGuard or when the next transaction begins.
        _cleanUpTxnResourceOnOpCtx(opCtx, TerminationCause::kAborted);
        opObserver->onTransactionAbort(opCtx, boost::none);
        _finishAbortingActiveTransaction(opCtx, expectedStates);
    }
}

void TransactionParticipant::Participant::_finishAbortingActiveTransaction(
    OperationContext* opCtx, TransactionState::StateSet expectedStates) {
    // Only abort the transaction in session if it's in expected states.
    // When the state of active transaction on session is not expected, it means another
    // thread has already aborted the transaction on session.
    if (o().txnState.isInSet(expectedStates)) {
        invariant(opCtx->getTxnNumber() == o().activeTxnNumber);
        _abortTransactionOnSession(opCtx);
    } else if (opCtx->getTxnNumber() == o().activeTxnNumber) {
        if (o().txnState.isInRetryableWriteMode()) {
            // The active transaction is not a multi-document transaction.
            invariant(opCtx->getWriteUnitOfWork() == nullptr);
            return;
        }

        // Cannot abort these states unless they are specified in expectedStates explicitly.
        const auto unabortableStates = TransactionState::kPrepared  //
            | TransactionState::kCommitted;                         //
        invariant(!o().txnState.isInSet(unabortableStates),
                  str::stream() << "Cannot abort transaction in " << o().txnState);
    } else {
        // If _activeTxnNumber is higher than ours, it means the transaction is already aborted.
        invariant(o().txnState.isInSet(TransactionState::kNone |
                                       TransactionState::kAbortedWithoutPrepare |
                                       TransactionState::kAbortedWithPrepare |
                                       TransactionState::kExecutedRetryableWrite),
                  str::stream() << "actual state: " << o().txnState);
    }
}

void TransactionParticipant::Participant::_abortTransactionOnSession(OperationContext* opCtx) {
    const auto tickSource = opCtx->getServiceContext()->getTickSource();

    {
        stdx::lock_guard<Client> lk(*opCtx->getClient());
        o(lk).transactionMetricsObserver.onAbort(
            ServerTransactionsMetrics::get(opCtx->getServiceContext()),
            tickSource,
            &Top::get(opCtx->getServiceContext()));
    }

    if (o().txnResourceStash) {
        _logSlowTransaction(opCtx,
                            &(o().txnResourceStash->locker()->getLockerInfo(boost::none))->stats,
                            TerminationCause::kAborted,
                            o().txnResourceStash->getReadConcernArgs());
    }

    const auto nextState = o().txnState.isPrepared() ? TransactionState::kAbortedWithPrepare
                                                     : TransactionState::kAbortedWithoutPrepare;

    stdx::lock_guard<Client> lk(*opCtx->getClient());
    _resetTransactionState(lk, nextState);
}

void TransactionParticipant::Participant::_cleanUpTxnResourceOnOpCtx(
    OperationContext* opCtx, TerminationCause terminationCause) {
    // Log the transaction if its duration is longer than the slowMS command threshold.
    _logSlowTransaction(
        opCtx,
        &(opCtx->lockState()->getLockerInfo(CurOp::get(*opCtx)->getLockStatsBase()))->stats,
        terminationCause,
        repl::ReadConcernArgs::get(opCtx));

    // Reset the WUOW. We should be able to abort empty transactions that don't have WUOW.
    if (opCtx->getWriteUnitOfWork()) {
        // We could have failed trying to get the initial global lock; in that case we will have a
        // WriteUnitOfWork but not have allocated the storage transaction.  That is the only case
        // where it is legal to abort a unit of work without the RSTL.
        invariant(opCtx->lockState()->isRSTLLocked() || !opCtx->recoveryUnit()->inActiveTxn());
        opCtx->setWriteUnitOfWork(nullptr);
    }

    // We must clear the recovery unit and locker so any post-transaction writes can run without
    // transactional settings such as a read timestamp.
    opCtx->setRecoveryUnit(std::unique_ptr<RecoveryUnit>(
                               opCtx->getServiceContext()->getStorageEngine()->newRecoveryUnit()),
                           WriteUnitOfWork::RecoveryUnitState::kNotInUnitOfWork);

    opCtx->lockState()->unsetMaxLockTimeout();
}

void TransactionParticipant::Participant::_checkIsCommandValidWithTxnState(
    const TxnNumber& requestTxnNumber, const std::string& cmdName) const {
    uassert(ErrorCodes::NoSuchTransaction,
            str::stream() << "Transaction " << requestTxnNumber << " has been aborted.",
            !o().txnState.isAborted());

    // Cannot change committed transaction but allow retrying commitTransaction command.
    uassert(ErrorCodes::TransactionCommitted,
            str::stream() << "Transaction " << requestTxnNumber << " has been committed.",
            cmdName == "commitTransaction" || !o().txnState.isCommitted());

    // Disallow operations other than abort, prepare or commit on a prepared transaction
    uassert(ErrorCodes::PreparedTransactionInProgress,
            str::stream() << "Cannot call any operation other than abort, prepare or commit on"
                          << " a prepared transaction",
            !o().txnState.isPrepared() ||
                preparedTxnCmdWhitelist.find(cmdName) != preparedTxnCmdWhitelist.cend());
}

BSONObj TransactionParticipant::Observer::reportStashedState(OperationContext* opCtx) const {
    BSONObjBuilder builder;
    reportStashedState(opCtx, &builder);
    return builder.obj();
}

void TransactionParticipant::Observer::reportStashedState(OperationContext* opCtx,
                                                          BSONObjBuilder* builder) const {
    if (o().txnResourceStash && o().txnResourceStash->locker()) {
        if (auto lockerInfo = o().txnResourceStash->locker()->getLockerInfo(boost::none)) {
            invariant(o().activeTxnNumber != kUninitializedTxnNumber);
            builder->append("type", "idleSession");
            builder->append("host", getHostNameCachedAndPort());
            builder->append("desc", "inactive transaction");

            const auto& lastClientInfo =
                o().transactionMetricsObserver.getSingleTransactionStats().getLastClientInfo();
            builder->append("client", lastClientInfo.clientHostAndPort);
            builder->append("connectionId", lastClientInfo.connectionId);
            builder->append("appName", lastClientInfo.appName);
            builder->append("clientMetadata", lastClientInfo.clientMetadata);

            {
                BSONObjBuilder lsid(builder->subobjStart("lsid"));
                _sessionId().serialize(&lsid);
            }

            BSONObjBuilder transactionBuilder;
            _reportTransactionStats(
                opCtx, &transactionBuilder, o().txnResourceStash->getReadConcernArgs());

            builder->append("transaction", transactionBuilder.obj());
            builder->append("waitingForLock", false);
            builder->append("active", false);

            fillLockerInfo(*lockerInfo, *builder);
        }
    }
}

void TransactionParticipant::Observer::reportUnstashedState(OperationContext* opCtx,
                                                            BSONObjBuilder* builder) const {
    // The Client mutex must be held when calling this function, so it is safe to access the state
    // of the TransactionParticipant.
    if (!o().txnResourceStash) {
        BSONObjBuilder transactionBuilder;
        _reportTransactionStats(opCtx, &transactionBuilder, repl::ReadConcernArgs::get(opCtx));
        builder->append("transaction", transactionBuilder.obj());
    }
}

std::string TransactionParticipant::TransactionState::toString(StateFlag state) {
    switch (state) {
        case TransactionParticipant::TransactionState::kNone:
            return "TxnState::None";
        case TransactionParticipant::TransactionState::kInProgress:
            return "TxnState::InProgress";
        case TransactionParticipant::TransactionState::kPrepared:
            return "TxnState::Prepared";
        case TransactionParticipant::TransactionState::kCommitted:
            return "TxnState::Committed";
        case TransactionParticipant::TransactionState::kAbortedWithoutPrepare:
            return "TxnState::AbortedWithoutPrepare";
        case TransactionParticipant::TransactionState::kAbortedWithPrepare:
            return "TxnState::AbortedAfterPrepare";
        case TransactionParticipant::TransactionState::kExecutedRetryableWrite:
            return "TxnState::ExecutedRetryableWrite";
    }
    MONGO_UNREACHABLE;
}

bool TransactionParticipant::TransactionState::_isLegalTransition(StateFlag oldState,
                                                                  StateFlag newState) {
    switch (oldState) {
        case kNone:
            switch (newState) {
                case kNone:
                case kInProgress:
                case kExecutedRetryableWrite:
                    return true;
                default:
                    return false;
            }
            MONGO_UNREACHABLE;
        case kInProgress:
            switch (newState) {
                case kNone:
                case kPrepared:
                case kCommitted:
                case kAbortedWithoutPrepare:
                    return true;
                default:
                    return false;
            }
            MONGO_UNREACHABLE;
        case kPrepared:
            switch (newState) {
                case kAbortedWithPrepare:
                case kCommitted:
                    return true;
                default:
                    return false;
            }
            MONGO_UNREACHABLE;
        case kCommitted:
            switch (newState) {
                case kNone:
                    return true;
                default:
                    return false;
            }
            MONGO_UNREACHABLE;
        case kAbortedWithoutPrepare:
            switch (newState) {
                case kNone:
                case kInProgress:
                    return true;
                default:
                    return false;
            }
            MONGO_UNREACHABLE;
        case kAbortedWithPrepare:
            switch (newState) {
                case kNone:
                    return true;
                default:
                    return false;
            }
            MONGO_UNREACHABLE;
        case kExecutedRetryableWrite:
            switch (newState) {
                case kNone:
                    return true;
                default:
                    return false;
            }
            MONGO_UNREACHABLE;
    }
    MONGO_UNREACHABLE;
}

void TransactionParticipant::TransactionState::transitionTo(StateFlag newState,
                                                            TransitionValidation shouldValidate) {
    if (shouldValidate == TransitionValidation::kValidateTransition) {
        invariant(TransactionState::_isLegalTransition(_state, newState),
                  str::stream() << "Current state: " << toString(_state)
                                << ", Illegal attempted next state: " << toString(newState));
    }

    // If we are transitioning out of prepare, signal waiters by fulfilling the completion promise.
    if (isPrepared()) {
        invariant(_exitPreparePromise);
        _exitPreparePromise->emplaceValue();
        _exitPreparePromise.reset();
    }

    _state = newState;

    // If we have transitioned into prepare, set the completion promise so other threads can wait
    // on the participant to transition out of prepare.
    if (isPrepared()) {
        invariant(!_exitPreparePromise);
        _exitPreparePromise.emplace();
    }
}

void TransactionParticipant::Observer::_reportTransactionStats(
    OperationContext* opCtx, BSONObjBuilder* builder, repl::ReadConcernArgs readConcernArgs) const {
    const auto tickSource = opCtx->getServiceContext()->getTickSource();
    o().transactionMetricsObserver.getSingleTransactionStats().report(
        builder, readConcernArgs, tickSource, tickSource->getTicks());
}

std::string TransactionParticipant::Participant::_transactionInfoForLog(
    OperationContext* opCtx,
    const SingleThreadedLockStats* lockStats,
    TerminationCause terminationCause,
    repl::ReadConcernArgs readConcernArgs) const {
    invariant(lockStats);

    StringBuilder s;

    // User specified transaction parameters.
    BSONObjBuilder parametersBuilder;

    BSONObjBuilder lsidBuilder(parametersBuilder.subobjStart("lsid"));
    _sessionId().serialize(&lsidBuilder);
    lsidBuilder.doneFast();

    parametersBuilder.append("txnNumber", o().activeTxnNumber);
    parametersBuilder.append("autocommit", p().autoCommit ? *p().autoCommit : true);
    readConcernArgs.appendInfo(&parametersBuilder);

    s << "parameters:" << parametersBuilder.obj().toString() << ",";

    const auto& singleTransactionStats = o().transactionMetricsObserver.getSingleTransactionStats();

    s << " readTimestamp:" << singleTransactionStats.getReadTimestamp().toString() << ",";

    s << singleTransactionStats.getOpDebug()->additiveMetrics.report();

    std::string terminationCauseString =
        terminationCause == TerminationCause::kCommitted ? "committed" : "aborted";
    s << " terminationCause:" << terminationCauseString;

    auto tickSource = opCtx->getServiceContext()->getTickSource();
    auto curTick = tickSource->getTicks();

    s << " timeActiveMicros:"
      << durationCount<Microseconds>(
             singleTransactionStats.getTimeActiveMicros(tickSource, curTick));
    s << " timeInactiveMicros:"
      << durationCount<Microseconds>(
             singleTransactionStats.getTimeInactiveMicros(tickSource, curTick));

    // Number of yields is always 0 in multi-document transactions, but it is included mainly to
    // match the format with other slow operation logging messages.
    s << " numYields:" << 0;
    // Aggregate lock statistics.

    BSONObjBuilder locks;
    lockStats->report(&locks);
    s << " locks:" << locks.obj().toString();

    if (singleTransactionStats.getOpDebug()->storageStats)
        s << " storage:" << singleTransactionStats.getOpDebug()->storageStats->toBSON().toString();

    // It is possible for a slow transaction to have aborted in the prepared state if an
    // exception was thrown before prepareTransaction succeeds.
    const auto totalPreparedDuration = durationCount<Microseconds>(
        singleTransactionStats.getPreparedDuration(tickSource, curTick));
    const bool txnWasPrepared = totalPreparedDuration > 0;
    s << " wasPrepared:" << txnWasPrepared;
    if (txnWasPrepared) {
        s << " totalPreparedDurationMicros:" << totalPreparedDuration;
        s << " prepareOpTime:" << o().prepareOpTime.toString();
    }

    // Total duration of the transaction.
    s << ", "
      << duration_cast<Milliseconds>(singleTransactionStats.getDuration(tickSource, curTick));

    return s.str();
}

void TransactionParticipant::Participant::_logSlowTransaction(
    OperationContext* opCtx,
    const SingleThreadedLockStats* lockStats,
    TerminationCause terminationCause,
    repl::ReadConcernArgs readConcernArgs) {
    // Only log multi-document transactions.
    if (!o().txnState.isInRetryableWriteMode()) {
        const auto tickSource = opCtx->getServiceContext()->getTickSource();
        // Log the transaction if log message verbosity for transaction component is >= 1 or its
        // duration is longer than the slowMS command threshold.
        if (shouldLog(logger::LogComponent::kTransaction, logger::LogSeverity::Debug(1)) ||
            o().transactionMetricsObserver.getSingleTransactionStats().getDuration(
                tickSource, tickSource->getTicks()) > Milliseconds(serverGlobalParams.slowMS)) {
            log(logger::LogComponent::kTransaction)
                << "transaction "
                << _transactionInfoForLog(opCtx, lockStats, terminationCause, readConcernArgs);
        }
    }
}

void TransactionParticipant::Participant::_setNewTxnNumber(OperationContext* opCtx,
                                                           const TxnNumber& txnNumber) {
    uassert(ErrorCodes::PreparedTransactionInProgress,
            "Cannot change transaction number while the session has a prepared transaction",
            !o().txnState.isInSet(TransactionState::kPrepared));

    LOG_FOR_TRANSACTION(4) << "New transaction started with txnNumber: " << txnNumber
                           << " on session with lsid " << _sessionId().getId();

    // Abort the existing transaction if it's not prepared, committed, or aborted.
    if (o().txnState.isInProgress()) {
        _abortTransactionOnSession(opCtx);
    }

    stdx::lock_guard<Client> lk(*opCtx->getClient());
    o(lk).activeTxnNumber = txnNumber;
    o(lk).lastWriteOpTime = repl::OpTime();

    // Reset the retryable writes state
    _resetRetryableWriteState();

    // Reset the transactional state
    _resetTransactionState(lk, TransactionState::kNone);

    // Reset the transactions metrics
    o(lk).transactionMetricsObserver.resetSingleTransactionStats(txnNumber);
}

void TransactionParticipant::Participant::refreshFromStorageIfNeeded(OperationContext* opCtx) {
    invariant(!opCtx->getClient()->isInDirectClient());
    invariant(!opCtx->lockState()->isLocked());

    if (p().isValid)
        return;

    auto activeTxnHistory = fetchActiveTransactionHistory(opCtx, _sessionId());
    const auto& lastTxnRecord = activeTxnHistory.lastTxnRecord;
    if (lastTxnRecord) {
        stdx::lock_guard<Client> lg(*opCtx->getClient());
        o(lg).activeTxnNumber = lastTxnRecord->getTxnNum();
        o(lg).lastWriteOpTime = lastTxnRecord->getLastWriteOpTime();
        p().activeTxnCommittedStatements = std::move(activeTxnHistory.committedStatements);
        p().hasIncompleteHistory = activeTxnHistory.hasIncompleteHistory;

        if (!lastTxnRecord->getState()) {
            o(lg).txnState.transitionTo(
                TransactionState::kExecutedRetryableWrite,
                TransactionState::TransitionValidation::kRelaxTransitionValidation);
        } else {
            switch (*lastTxnRecord->getState()) {
                case DurableTxnStateEnum::kCommitted:
                    o(lg).txnState.transitionTo(
                        TransactionState::kCommitted,
                        TransactionState::TransitionValidation::kRelaxTransitionValidation);
                    break;
                case DurableTxnStateEnum::kAborted:
                    o(lg).txnState.transitionTo(
                        TransactionState::kAbortedWithPrepare,
                        TransactionState::TransitionValidation::kRelaxTransitionValidation);
                    break;
                // We should never be refreshing a prepared or in-progress transaction from storage
                // since it should already be in a valid state after replication recovery.
                case DurableTxnStateEnum::kPrepared:
                case DurableTxnStateEnum::kInProgress:
                    MONGO_UNREACHABLE;
            }
        }
    }

    p().isValid = true;
}

void TransactionParticipant::Participant::onWriteOpCompletedOnPrimary(
    OperationContext* opCtx,
    std::vector<StmtId> stmtIdsWritten,
    const SessionTxnRecord& sessionTxnRecord) {
    invariant(opCtx->lockState()->inAWriteUnitOfWork());
    invariant(sessionTxnRecord.getSessionId() == _sessionId());
    invariant(sessionTxnRecord.getTxnNum() == o().activeTxnNumber);

    // Sanity check that we don't double-execute statements
    for (const auto stmtId : stmtIdsWritten) {
        const auto stmtOpTime = _checkStatementExecuted(stmtId);
        if (stmtOpTime) {
            fassertOnRepeatedExecution(_sessionId(),
                                       sessionTxnRecord.getTxnNum(),
                                       stmtId,
                                       *stmtOpTime,
                                       sessionTxnRecord.getLastWriteOpTime());
        }
    }

    const auto updateRequest = _makeUpdateRequest(sessionTxnRecord);

    repl::UnreplicatedWritesBlock doNotReplicateWrites(opCtx);

    updateSessionEntry(opCtx, updateRequest);
    _registerUpdateCacheOnCommit(
        opCtx, std::move(stmtIdsWritten), sessionTxnRecord.getLastWriteOpTime());
}

void TransactionParticipant::Participant::onMigrateCompletedOnPrimary(
    OperationContext* opCtx,
    std::vector<StmtId> stmtIdsWritten,
    const SessionTxnRecord& sessionTxnRecord) {
    invariant(opCtx->lockState()->inAWriteUnitOfWork());
    invariant(sessionTxnRecord.getSessionId() == _sessionId());
    invariant(sessionTxnRecord.getTxnNum() == o().activeTxnNumber);

    const auto updateRequest = _makeUpdateRequest(sessionTxnRecord);

    repl::UnreplicatedWritesBlock doNotReplicateWrites(opCtx);

    updateSessionEntry(opCtx, updateRequest);
    _registerUpdateCacheOnCommit(
        opCtx, std::move(stmtIdsWritten), sessionTxnRecord.getLastWriteOpTime());
}

void TransactionParticipant::Participant::_invalidate(WithLock wl) {
    p().isValid = false;
    o(wl).activeTxnNumber = kUninitializedTxnNumber;
    o(wl).lastWriteOpTime = repl::OpTime();

    // Reset the transactions metrics.
    o(wl).transactionMetricsObserver.resetSingleTransactionStats(o().activeTxnNumber);
}

void TransactionParticipant::Participant::_resetRetryableWriteState() {
    p().activeTxnCommittedStatements.clear();
    p().hasIncompleteHistory = false;
}

void TransactionParticipant::Participant::_resetTransactionState(
    WithLock wl, TransactionState::StateFlag state) {
    // If we are transitioning to kNone, we are either starting a new transaction or aborting a
    // prepared transaction for rollback. In the latter case, we will need to relax the invariant
    // that prevents transitioning from kPrepared to kNone.
    if (o().txnState.isPrepared() && state == TransactionState::kNone) {
        o(wl).txnState.transitionTo(
            state, TransactionState::TransitionValidation::kRelaxTransitionValidation);
    } else {
        o(wl).txnState.transitionTo(state);
    }

    p().transactionOperationBytes = 0;
    p().transactionOperations.clear();
    o(wl).prepareOpTime = repl::OpTime();
    o(wl).recoveryPrepareOpTime = repl::OpTime();
    p().autoCommit = boost::none;
    p().needToWriteAbortEntry = false;

    // Release any locks held by this participant and abort the storage transaction.
    o(wl).txnResourceStash = boost::none;
}

void TransactionParticipant::Participant::invalidate(OperationContext* opCtx) {
    stdx::lock_guard<Client> lg(*opCtx->getClient());

    uassert(ErrorCodes::PreparedTransactionInProgress,
            "Cannot invalidate prepared transaction",
            !o().txnState.isInSet(TransactionState::kPrepared));

    // Invalidate the session and clear both the retryable writes and transactional states on
    // this participant.
    _invalidate(lg);
    _resetRetryableWriteState();
    _resetTransactionState(lg, TransactionState::kNone);
}

boost::optional<repl::OplogEntry> TransactionParticipant::Participant::checkStatementExecuted(
    OperationContext* opCtx, StmtId stmtId) const {
    const auto stmtTimestamp = _checkStatementExecuted(stmtId);

    if (!stmtTimestamp)
        return boost::none;

    TransactionHistoryIterator txnIter(*stmtTimestamp);
    while (txnIter.hasNext()) {
        const auto entry = txnIter.next(opCtx);
        invariant(entry.getStatementId());
        if (*entry.getStatementId() == stmtId)
            return entry;
    }

    MONGO_UNREACHABLE;
}

bool TransactionParticipant::Participant::checkStatementExecutedNoOplogEntryFetch(
    StmtId stmtId) const {
    return bool(_checkStatementExecuted(stmtId));
}

boost::optional<repl::OpTime> TransactionParticipant::Participant::_checkStatementExecuted(
    StmtId stmtId) const {
    invariant(p().isValid);

    const auto it = p().activeTxnCommittedStatements.find(stmtId);
    if (it == p().activeTxnCommittedStatements.end()) {
        uassert(ErrorCodes::IncompleteTransactionHistory,
                str::stream() << "Incomplete history detected for transaction "
                              << o().activeTxnNumber << " on session " << _sessionId(),
                !p().hasIncompleteHistory);

        return boost::none;
    }

    return it->second;
}

UpdateRequest TransactionParticipant::Participant::_makeUpdateRequest(
    const SessionTxnRecord& sessionTxnRecord) const {
    UpdateRequest updateRequest(NamespaceString::kSessionTransactionsTableNamespace);

    updateRequest.setUpdateModification(sessionTxnRecord.toBSON());
    updateRequest.setQuery(BSON(SessionTxnRecord::kSessionIdFieldName << _sessionId().toBSON()));
    updateRequest.setUpsert(true);

    return updateRequest;
}

void TransactionParticipant::Participant::_registerUpdateCacheOnCommit(
    OperationContext* opCtx,
    std::vector<StmtId> stmtIdsWritten,
    const repl::OpTime& lastStmtIdWriteOpTime) {
    opCtx->recoveryUnit()->onCommit([opCtx,
                                     stmtIdsWritten = std::move(stmtIdsWritten),
                                     lastStmtIdWriteOpTime](boost::optional<Timestamp>) {
        TransactionParticipant::Participant participant(opCtx);
        invariant(participant.p().isValid);

        RetryableWritesStats::get(opCtx->getServiceContext())
            ->incrementTransactionsCollectionWriteCount();

        stdx::lock_guard<Client> lg(*opCtx->getClient());

        // The cache of the last written record must always be advanced after a write so that
        // subsequent writes have the correct point to start from.
        participant.o(lg).lastWriteOpTime = lastStmtIdWriteOpTime;

        for (const auto stmtId : stmtIdsWritten) {
            if (stmtId == kIncompleteHistoryStmtId) {
                participant.p().hasIncompleteHistory = true;
                continue;
            }

            const auto insertRes =
                participant.p().activeTxnCommittedStatements.emplace(stmtId, lastStmtIdWriteOpTime);
            if (!insertRes.second) {
                const auto& existingOpTime = insertRes.first->second;
                fassertOnRepeatedExecution(participant._sessionId(),
                                           participant.o().activeTxnNumber,
                                           stmtId,
                                           existingOpTime,
                                           lastStmtIdWriteOpTime);
            }
        }

        // If this is the first time executing a retryable write, we should indicate that to
        // the transaction participant.
        if (participant.o(lg).txnState.isNone()) {
            participant.o(lg).txnState.transitionTo(TransactionState::kExecutedRetryableWrite);
        }
    });

    onPrimaryTransactionalWrite.execute([&](const BSONObj& data) {
        const auto closeConnectionElem = data["closeConnection"];
        if (closeConnectionElem.eoo() || closeConnectionElem.Bool()) {
            opCtx->getClient()->session()->end();
        }

        const auto failBeforeCommitExceptionElem = data["failBeforeCommitExceptionCode"];
        if (!failBeforeCommitExceptionElem.eoo()) {
            const auto failureCode = ErrorCodes::Error(int(failBeforeCommitExceptionElem.Number()));
            uasserted(failureCode,
                      str::stream()
                          << "Failing write for " << _sessionId() << ":" << o().activeTxnNumber
                          << " due to failpoint. The write must not be reflected.");
        }
    });
}

}  // namespace mongo