summaryrefslogtreecommitdiff
path: root/src/mongo/db/transaction_reaper.cpp
blob: ed60be0aedb373b0280288f444ce14bbb8407b6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
/**
 * Copyright (C) 2017 MongoDB Inc.
 *
 * This program is free software: you can redistribute it and/or  modify
 * it under the terms of the GNU Affero General Public License, version 3,
 * as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * As a special exception, the copyright holders give permission to link the
 * code of portions of this program with the OpenSSL library under certain
 * conditions as described in each individual source file and distribute
 * linked combinations including the program with the OpenSSL library. You
 * must comply with the GNU Affero General Public License in all respects
 * for all of the code used other than as permitted herein. If you modify
 * file(s) with this exception, you may extend this exception to your
 * version of the file(s), but you are not obligated to do so. If you do not
 * wish to do so, delete this exception statement from your version. If you
 * delete this exception statement from all source files in the program,
 * then also delete it in the license file.
 */

#include "mongo/platform/basic.h"

#include "mongo/db/transaction_reaper.h"

#include "mongo/bson/bsonmisc.h"
#include "mongo/db/catalog_raii.h"
#include "mongo/db/client.h"
#include "mongo/db/curop.h"
#include "mongo/db/dbdirectclient.h"
#include "mongo/db/operation_context.h"
#include "mongo/db/ops/write_ops.h"
#include "mongo/db/repl/replication_coordinator.h"
#include "mongo/db/server_parameters.h"
#include "mongo/db/session_txn_record_gen.h"
#include "mongo/db/sessions_collection.h"
#include "mongo/platform/atomic_word.h"
#include "mongo/s/catalog_cache.h"
#include "mongo/s/client/shard.h"
#include "mongo/s/client/shard_registry.h"
#include "mongo/s/grid.h"
#include "mongo/stdx/memory.h"
#include "mongo/util/scopeguard.h"

namespace mongo {
namespace {

constexpr Minutes kTransactionRecordMinimumLifetime(30);

/**
 * The minimum lifetime for a transaction record is how long it has to have lived on the server
 * before we'll consider it for cleanup.  This is effectively the window for how long it is
 * permissible for a mongos to hang before we're willing to accept a failure of the retryable write
 * subsystem.
 *
 * Specifically, we imagine that a client connects to one mongos on a session and performs a
 * retryable write.  That mongos hangs.  Then the client connects to a new mongos on the same
 * session and successfully executes its write.  After a day passes, the session will time out,
 * cleaning up the retryable write.  Then the original mongos wakes up, vivifies the session and
 * executes the write (because all records of the session + transaction have been deleted).
 *
 * So the write is performed twice, which is unavoidable without losing session vivification and/or
 * requiring synchronized clocks all the way out to the client.  In lieu of that we provide a weaker
 * guarantee after the minimum transaction lifetime.
 */
MONGO_EXPORT_STARTUP_SERVER_PARAMETER(TransactionRecordMinimumLifetimeMinutes,
                                      int,
                                      kTransactionRecordMinimumLifetime.count());

const auto kIdProjection = BSON(SessionTxnRecord::kSessionIdFieldName << 1);
const auto kSortById = BSON(SessionTxnRecord::kSessionIdFieldName << 1);
const auto kLastWriteDateFieldName = SessionTxnRecord::kLastWriteDateFieldName;

/**
 * Makes the query we'll use to scan the transactions table.
 *
 * Scans for records older than the minimum lifetime and uses a sort to walk the index and attempt
 * to pull records likely to be on the same chunks (because they sort near each other).
 */
Query makeQuery(Date_t now) {
    const Date_t possiblyExpired(now - Minutes(TransactionRecordMinimumLifetimeMinutes));
    Query query(BSON(kLastWriteDateFieldName << LT << possiblyExpired));
    query.sort(kSortById);
    return query;
}

/**
 * Our impl is templatized on a type which handles the lsids we see.  It provides the top level
 * scaffolding for figuring out if we're the primary node responsible for the transaction table and
 * invoking the handler.
 *
 * The handler here will see all of the possibly expired txn ids in the transaction table and will
 * have a lifetime associated with a single call to reap.
 */
template <typename Handler>
class TransactionReaperImpl final : public TransactionReaper {
public:
    TransactionReaperImpl(std::shared_ptr<SessionsCollection> collection)
        : _collection(std::move(collection)) {}

    int reap(OperationContext* opCtx) override {
        auto const coord = mongo::repl::ReplicationCoordinator::get(opCtx);

        Handler handler(opCtx, *_collection);
        if (!handler.initialize()) {
            return 0;
        }

        AutoGetCollection autoColl(
            opCtx, NamespaceString::kSessionTransactionsTableNamespace, MODE_IS);

        // Only start reaping if the shard or config server node is currently the primary
        if (!coord->canAcceptWritesForDatabase(
                opCtx, NamespaceString::kSessionTransactionsTableNamespace.db())) {
            return 0;
        }

        DBDirectClient client(opCtx);

        auto query = makeQuery(opCtx->getServiceContext()->getFastClockSource()->now());
        auto cursor = client.query(
            NamespaceString::kSessionTransactionsTableNamespace.ns(), query, 0, 0, &kIdProjection);

        while (cursor->more()) {
            auto transactionSession = SessionsCollectionFetchResultIndividualResult::parse(
                "TransactionSession"_sd, cursor->next());

            handler.handleLsid(transactionSession.get_id());
        }

        // Before the handler goes out of scope, flush its last batch to disk and collect stats.
        return handler.finalize();
    }

private:
    std::shared_ptr<SessionsCollection> _collection;
};

/**
 * Removes the specified set of session ids from the persistent sessions collection and returns the
 * number of sessions actually removed.
 */
int removeSessionsRecords(OperationContext* opCtx,
                          SessionsCollection& sessionsCollection,
                          const LogicalSessionIdSet& sessionIdsToRemove) {
    if (sessionIdsToRemove.empty()) {
        return 0;
    }

    Locker* locker = opCtx->lockState();

    Locker::LockSnapshot snapshot;
    invariant(locker->saveLockStateAndUnlock(&snapshot));

    const auto guard = MakeGuard([&] {
        UninterruptibleLockGuard noInterrupt(opCtx->lockState());
        locker->restoreLockState(opCtx, snapshot);
    });

    // Top-level locks are freed, release any potential low-level (storage engine-specific
    // locks). If we are yielding, we are at a safe place to do so.
    opCtx->recoveryUnit()->abandonSnapshot();

    // Track the number of yields in CurOp.
    CurOp::get(opCtx)->yielded();

    auto removed =
        uassertStatusOK(sessionsCollection.findRemovedSessions(opCtx, sessionIdsToRemove));
    uassertStatusOK(sessionsCollection.removeTransactionRecords(opCtx, removed));

    return removed.size();
}

/**
 * The repl impl is simple, just pass along to the sessions collection for checking ids locally
 */
class ReplHandler {
public:
    ReplHandler(OperationContext* opCtx, SessionsCollection& sessionsCollection)
        : _opCtx(opCtx), _sessionsCollection(sessionsCollection) {}

    bool initialize() {
        return true;
    }

    void handleLsid(const LogicalSessionId& lsid) {
        _batch.insert(lsid);

        if (_batch.size() >= write_ops::kMaxWriteBatchSize) {
            _numReaped += removeSessionsRecords(_opCtx, _sessionsCollection, _batch);
            _batch.clear();
        }
    }

    int finalize() {
        invariant(!_finalized);
        _finalized = true;

        _numReaped += removeSessionsRecords(_opCtx, _sessionsCollection, _batch);
        return _numReaped;
    }

private:
    OperationContext* const _opCtx;
    SessionsCollection& _sessionsCollection;

    LogicalSessionIdSet _batch;

    int _numReaped{0};

    bool _finalized{false};
};

/**
 * The sharding impl is a little fancier.  Try to bucket by shard id, to avoid doing repeated small
 * scans.
 */
class ShardedHandler {
public:
    ShardedHandler(OperationContext* opCtx, SessionsCollection& sessionsCollection)
        : _opCtx(opCtx), _sessionsCollection(sessionsCollection) {}

    // Returns false if the sessions collection is not set up.
    bool initialize() {
        auto routingInfo =
            uassertStatusOK(Grid::get(_opCtx)->catalogCache()->getCollectionRoutingInfo(
                _opCtx, NamespaceString::kLogicalSessionsNamespace));
        _cm = routingInfo.cm();
        return !!_cm;
    }

    void handleLsid(const LogicalSessionId& lsid) {
        invariant(_cm);
        const auto chunk = _cm->findIntersectingChunkWithSimpleCollation(lsid.toBSON());
        const auto shardId = chunk.getShardId();

        auto& lsids = _shards[shardId];
        lsids.insert(lsid);

        if (lsids.size() >= write_ops::kMaxWriteBatchSize) {
            _numReaped += removeSessionsRecords(_opCtx, _sessionsCollection, lsids);
            _shards.erase(shardId);
        }
    }

    int finalize() {
        invariant(!_finalized);
        _finalized = true;

        for (const auto& pair : _shards) {
            _numReaped += removeSessionsRecords(_opCtx, _sessionsCollection, pair.second);
        }

        return _numReaped;
    }

private:
    OperationContext* const _opCtx;
    SessionsCollection& _sessionsCollection;

    std::shared_ptr<ChunkManager> _cm;

    stdx::unordered_map<ShardId, LogicalSessionIdSet, ShardId::Hasher> _shards;
    int _numReaped{0};

    bool _finalized{false};
};

}  // namespace

std::unique_ptr<TransactionReaper> TransactionReaper::make(
    Type type, std::shared_ptr<SessionsCollection> collection) {
    switch (type) {
        case Type::kReplicaSet:
            return stdx::make_unique<TransactionReaperImpl<ReplHandler>>(std::move(collection));
        case Type::kSharded:
            return stdx::make_unique<TransactionReaperImpl<ShardedHandler>>(std::move(collection));
    }
    MONGO_UNREACHABLE;
}

TransactionReaper::~TransactionReaper() = default;

}  // namespace mongo