summaryrefslogtreecommitdiff
path: root/src/mongo/gotools/src/github.com/mongodb/mongo-tools/vendor/golang.org/x/sync/semaphore/semaphore.go
blob: 7f096fef07c4bd6196107f1ad4dbe4899312b185 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package semaphore provides a weighted semaphore implementation.
package semaphore // import "golang.org/x/sync/semaphore"

import (
	"container/list"
	"context"
	"sync"
)

type waiter struct {
	n     int64
	ready chan<- struct{} // Closed when semaphore acquired.
}

// NewWeighted creates a new weighted semaphore with the given
// maximum combined weight for concurrent access.
func NewWeighted(n int64) *Weighted {
	w := &Weighted{size: n}
	return w
}

// Weighted provides a way to bound concurrent access to a resource.
// The callers can request access with a given weight.
type Weighted struct {
	size    int64
	cur     int64
	mu      sync.Mutex
	waiters list.List
}

// Acquire acquires the semaphore with a weight of n, blocking until resources
// are available or ctx is done. On success, returns nil. On failure, returns
// ctx.Err() and leaves the semaphore unchanged.
//
// If ctx is already done, Acquire may still succeed without blocking.
func (s *Weighted) Acquire(ctx context.Context, n int64) error {
	s.mu.Lock()
	if s.size-s.cur >= n && s.waiters.Len() == 0 {
		s.cur += n
		s.mu.Unlock()
		return nil
	}

	if n > s.size {
		// Don't make other Acquire calls block on one that's doomed to fail.
		s.mu.Unlock()
		<-ctx.Done()
		return ctx.Err()
	}

	ready := make(chan struct{})
	w := waiter{n: n, ready: ready}
	elem := s.waiters.PushBack(w)
	s.mu.Unlock()

	select {
	case <-ctx.Done():
		err := ctx.Err()
		s.mu.Lock()
		select {
		case <-ready:
			// Acquired the semaphore after we were canceled.  Rather than trying to
			// fix up the queue, just pretend we didn't notice the cancelation.
			err = nil
		default:
			s.waiters.Remove(elem)
		}
		s.mu.Unlock()
		return err

	case <-ready:
		return nil
	}
}

// TryAcquire acquires the semaphore with a weight of n without blocking.
// On success, returns true. On failure, returns false and leaves the semaphore unchanged.
func (s *Weighted) TryAcquire(n int64) bool {
	s.mu.Lock()
	success := s.size-s.cur >= n && s.waiters.Len() == 0
	if success {
		s.cur += n
	}
	s.mu.Unlock()
	return success
}

// Release releases the semaphore with a weight of n.
func (s *Weighted) Release(n int64) {
	s.mu.Lock()
	s.cur -= n
	if s.cur < 0 {
		s.mu.Unlock()
		panic("semaphore: released more than held")
	}
	for {
		next := s.waiters.Front()
		if next == nil {
			break // No more waiters blocked.
		}

		w := next.Value.(waiter)
		if s.size-s.cur < w.n {
			// Not enough tokens for the next waiter.  We could keep going (to try to
			// find a waiter with a smaller request), but under load that could cause
			// starvation for large requests; instead, we leave all remaining waiters
			// blocked.
			//
			// Consider a semaphore used as a read-write lock, with N tokens, N
			// readers, and one writer.  Each reader can Acquire(1) to obtain a read
			// lock.  The writer can Acquire(N) to obtain a write lock, excluding all
			// of the readers.  If we allow the readers to jump ahead in the queue,
			// the writer will starve — there is always one token available for every
			// reader.
			break
		}

		s.cur += w.n
		s.waiters.Remove(next)
		close(w.ready)
	}
	s.mu.Unlock()
}