1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
|
/* Copyright 2014 MongoDB Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the GNU Affero General Public License in all respects
* for all of the code used other than as permitted herein. If you modify
* file(s) with this exception, you may extend this exception to your
* version of the file(s), but you are not obligated to do so. If you do not
* wish to do so, delete this exception statement from your version. If you
* delete this exception statement from all source files in the program,
* then also delete it in the license file.
*/
#include "mongo/platform/decimal128.h"
#include "mongo/platform/basic.h"
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdlib>
#include <iostream>
#include <memory>
#include <string>
#include <utility>
// The Intel C library typedefs wchar_t, but it is a distinct fundamental type
// in C++, so we #define _WCHAR_T here to prevent the library from trying to typedef.
#define _WCHAR_T
#include <third_party/IntelRDFPMathLib20U1/LIBRARY/src/bid_conf.h>
#include <third_party/IntelRDFPMathLib20U1/LIBRARY/src/bid_functions.h>
#undef _WCHAR_T
#include "mongo/base/static_assert.h"
#include "mongo/config.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/stringutils.h"
namespace {
void validateInputString(mongo::StringData input, std::uint32_t* signalingFlags) {
// Input must be of these forms:
// * Valid decimal (standard or scientific notation):
// /[-+]?\d*(.\d+)?([e][+\-]?\d+)?/
// * NaN: /[-+]?[[Nn][Aa][Nn]]/
// * Infinity: /[+\-]?(inf|infinity)
bool isSigned = input[0] == '-' || input[0] == '+';
// Check for NaN and Infinity
size_t start = (isSigned) ? 1 : 0;
mongo::StringData noSign = input.substr(start);
bool isNanOrInf = noSign == "nan" || noSign == "inf" || noSign == "infinity";
if (isNanOrInf)
return;
// Input starting with non digit
if (!std::isdigit(noSign[0])) {
if (noSign[0] != '.') {
*signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid;
return;
} else if (noSign.size() == 1) {
*signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid;
return;
}
}
bool isZero = true;
bool hasCoefficient = false;
// Check coefficient, i.e. the part before the e
int dotCount = 0;
size_t i = 0;
for (/*i = 0*/; i < noSign.size(); i++) {
char c = noSign[i];
if (c == '.') {
dotCount++;
if (dotCount > 1) {
*signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid;
return;
}
} else if (!std::isdigit(c)) {
break;
} else {
hasCoefficient = true;
if (c != '0') {
isZero = false;
}
}
}
if (isZero) {
// Override inexact/overflow flag set by the intel library
*signalingFlags = mongo::Decimal128::SignalingFlag::kNoFlag;
}
// Input is valid if we've parsed the entire string
if (i == noSign.size()) {
return;
}
// String with empty coefficient and non-empty exponent
if (!hasCoefficient) {
*signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid;
return;
}
// Check exponent
mongo::StringData exponent = noSign.substr(i);
if (exponent[0] != 'e' || exponent.size() < 2) {
*signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid;
return;
}
if (exponent[1] == '-' || exponent[1] == '+') {
exponent = exponent.substr(2);
if (exponent.size() == 0) {
*signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid;
return;
}
} else {
exponent = exponent.substr(1);
}
for (size_t j = 0; j < exponent.size(); j++) {
char c = exponent[j];
if (!std::isdigit(c)) {
*signalingFlags = mongo::Decimal128::SignalingFlag::kInvalid;
return;
}
}
}
} // namespace
namespace mongo {
namespace {
// Determine system's endian ordering in order to construct decimal 128 values directly
#if MONGO_CONFIG_BYTE_ORDER == 1234
const int kHigh64 = 1;
const int kLow64 = 0;
#else
const int kHigh64 = 0;
const int kLow64 = 1;
#endif
// The Intel library uses long long for BID_UINT128s parts, which on some
// systems is longer than a uint64_t. We need to cast down, although there
// will not be data loss.
inline Decimal128::Value libraryTypeToValue(BID_UINT128 value) {
return {static_cast<std::uint64_t>(value.w[kLow64]),
static_cast<std::uint64_t>(value.w[kHigh64])};
}
/**
* This helper function creates a library specific type for the
* IntelRDFPMathLib20U1 library from Decimal128's _value
*/
BID_UINT128 decimal128ToLibraryType(Decimal128::Value value) {
BID_UINT128 dec128;
dec128.w[kLow64] = value.low64;
dec128.w[kHigh64] = value.high64;
return dec128;
}
} // namespace
Decimal128::Decimal128(std::int32_t int32Value)
: _value(libraryTypeToValue(bid128_from_int32(int32Value))) {}
Decimal128::Decimal128(std::int64_t int64Value)
: _value(libraryTypeToValue(bid128_from_int64(int64Value))) {}
/**
* Quantize a doubleValue argument to a Decimal128 with exactly 15 digits
* of precision.
*
* To highlight the motivation for this function, consider doubleValue = 0.1.
* The quantity 0.1 does not have an exact respresentation as a double.
* The actual value stored in the 64-bit type is 0.1000000000000000055511...
*
* Although imprecise, the double type does guarantee a minimum of 15 digits
* of decimal precision. When casting the double to a decimal type, we choose
* to only appreciate the double's first 15 digits and round accordingly.
*
* To perform this operation, doubleValue is converted to a decimal and then quantized
* with the appropriate quantum (Q) to yield exactly 15 digits of precision.
* For example,
* doubleValue = 0.1
* dec128 = Decimal128(doubleValue) <== 0.1000000000000000055511151231257827
* Q = 1E-15
* dec128.quantize(Q)
* ==> 0.100000000000000
*
* The value to quantize dec128 on (Q) is related to the base 10 exponent of the rounded
* doubleValue,
* Q = 10 ** (floor(log10(doubleValue rounded to 15 decimal digits)) - 14)
*
*
* ===============================================================================
*
* Convert a double's base 2 exponent to base 10 using integer arithmetic.
*
* Given doubleValue with exponent base2Exp, we would like to find base10Exp such that:
* (1) 10**base10Exp > |doubleValue rounded to 15 decimal digits|
* (2) 10**(base10Exp-1) <= |doubleValue rounded to 15 decimal digits|
*
* Given a double precision number of the form 2**E, we can compute base10Exp such that these
* conditions hold for 2**E. However, because the absolute value of doubleValue maybe up to a
* factor of two higher, the required base10Exp may be 1 higher. Exactly knowing in which case we
* are would require knowing how the double value will round, so just try with the lowest
* possible base10Exp, and retry if we need to increase the exponent by 1. It is important to first
* try the lower exponent, as the other way around might unnecessarily lose a significant digit,
* as in 0.9999999999999994 (15 nines) -> 1.00000000000000 (14 zeros) instead of 0.999999999999999
* (15 nines).
*
* +-------------+-------------------+----------------------+---------------------------+
* | doubleValue | base2Exp | computed base10Exp | Q |
* +-------------+-------------------+----------------------+---------------------------+
* | 100000 | 16 | 4 | 10**(5 - 14) <= Retry |
* | 500000 | 18 | 5 | 10**(5 - 14) |
* | 999999 | 19 | 5 | 10**(5 - 14) |
* | .00001 | -17 | -6 | 10**(5 - 14) <= Retry |
* | .00005 | -15 | -5 | 10**(5 - 14) |
* | .00009 | -14 | -5 | 10**(5 - 14) |
* +-------------+-------------------+----------------------+---------------------------+
*/
Decimal128::Decimal128(double doubleValue,
RoundingPrecision roundPrecision,
RoundingMode roundMode) {
std::uint32_t throwAwayFlag = 0;
Decimal128 convertedDoubleValue(
libraryTypeToValue(binary64_to_bid128(doubleValue, roundMode, &throwAwayFlag)));
// If the original number was zero, infinity, or NaN, there's no need to quantize
if (doubleValue == 0.0 || std::isinf(doubleValue) || std::isnan(doubleValue) ||
roundPrecision == kRoundTo34Digits) {
*this = convertedDoubleValue;
return;
}
// Get the base2 exponent from doubleValue.
int base2Exp;
frexp(doubleValue, &base2Exp);
// As frexp normalizes doubleValue between 0.5 and 1.0 rather than 1.0 and 2.0, adjust.
base2Exp--;
// We will use base10Exp = base2Exp * 30103 / (100*1000) as lowerbound (using integer division).
//
// This formula is derived from the following, with base2Exp the binary exponent of doubleValue:
// (1) 10**(base2Exp * log10(2)) == 2**base2Exp
// (2) 0.30103 closely approximates log10(2)
//
// Exhaustive testing using Python shows :
// { base2Exp * 30103 / (100 * 1000) == math.floor(math.log10(2**base2Exp))
// for base2Exp in xrange(-1074, 1023) } == { True }
int base10Exp = (base2Exp * 30103) / (100 * 1000);
// As integer division truncates, rather than rounds down (as in Python), adjust accordingly.
if (base2Exp < 0)
base10Exp--;
Decimal128 Q(0, base10Exp - 14 + Decimal128::kExponentBias, 0, 1);
*this = convertedDoubleValue.quantize(Q, roundMode);
// Check if the quantization was done correctly: _value stores exactly 15
// decimal digits of precision (15 digits can fit into the low 64 bits of the decimal)
uint64_t kSmallest15DigitInt = 1E14; // A 1 with 14 zeros
uint64_t kLargest15DigitInt = 1E15 - 1; // 15 nines
if (getCoefficientLow() > kLargest15DigitInt) {
// If we didn't precisely get 15 digits of precision, the original base 10 exponent
// guess was 1 off, so quantize once more with base10Exp + 1
Q = Decimal128(0, base10Exp - 13 + Decimal128::kExponentBias, 0, 1);
*this = convertedDoubleValue.quantize(Q, roundMode);
}
// The decimal must have exactly 15 digits of precision
invariant(getCoefficientHigh() == 0);
invariant(getCoefficientLow() >= kSmallest15DigitInt);
invariant(getCoefficientLow() <= kLargest15DigitInt);
}
Decimal128::Decimal128(std::string stringValue, RoundingMode roundMode) {
std::uint32_t throwAwayFlag = 0;
*this = Decimal128(stringValue, &throwAwayFlag, roundMode);
}
Decimal128::Decimal128(std::string stringValue,
std::uint32_t* signalingFlags,
RoundingMode roundMode) {
std::string lower = toAsciiLowerCase(stringValue);
BID_UINT128 dec128;
// The intel library function requires a char * while c_str() returns a const char*.
// We're using const_cast here since the library function should not modify the input.
dec128 = bid128_from_string(const_cast<char*>(lower.c_str()), roundMode, signalingFlags);
validateInputString(StringData(lower), signalingFlags);
_value = libraryTypeToValue(dec128);
}
Decimal128::Value Decimal128::getValue() const {
return _value;
}
Decimal128 Decimal128::toAbs() const {
BID_UINT128 dec128 = decimal128ToLibraryType(_value);
dec128 = bid128_abs(dec128);
return Decimal128(libraryTypeToValue(dec128));
}
std::int32_t Decimal128::toInt(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return toInt(&throwAwayFlag, roundMode);
}
std::int32_t Decimal128::toInt(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 dec128 = decimal128ToLibraryType(_value);
switch (roundMode) {
case kRoundTiesToEven:
return bid128_to_int32_rnint(dec128, signalingFlags);
case kRoundTowardNegative:
return bid128_to_int32_floor(dec128, signalingFlags);
case kRoundTowardPositive:
return bid128_to_int32_ceil(dec128, signalingFlags);
case kRoundTowardZero:
return bid128_to_int32_int(dec128, signalingFlags);
case kRoundTiesToAway:
return bid128_to_int32_rninta(dec128, signalingFlags);
default:
return bid128_to_int32_rnint(dec128, signalingFlags);
}
}
int64_t Decimal128::toLong(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return toLong(&throwAwayFlag, roundMode);
}
int64_t Decimal128::toLong(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 dec128 = decimal128ToLibraryType(_value);
switch (roundMode) {
case kRoundTiesToEven:
return bid128_to_int64_rnint(dec128, signalingFlags);
case kRoundTowardNegative:
return bid128_to_int64_floor(dec128, signalingFlags);
case kRoundTowardPositive:
return bid128_to_int64_ceil(dec128, signalingFlags);
case kRoundTowardZero:
return bid128_to_int64_int(dec128, signalingFlags);
case kRoundTiesToAway:
return bid128_to_int64_rninta(dec128, signalingFlags);
default:
return bid128_to_int64_rnint(dec128, signalingFlags);
}
}
std::int32_t Decimal128::toIntExact(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return toIntExact(&throwAwayFlag, roundMode);
}
std::int32_t Decimal128::toIntExact(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 dec128 = decimal128ToLibraryType(_value);
switch (roundMode) {
case kRoundTiesToEven:
return bid128_to_int32_xrnint(dec128, signalingFlags);
case kRoundTowardNegative:
return bid128_to_int32_xfloor(dec128, signalingFlags);
case kRoundTowardPositive:
return bid128_to_int32_xceil(dec128, signalingFlags);
case kRoundTowardZero:
return bid128_to_int32_xint(dec128, signalingFlags);
case kRoundTiesToAway:
return bid128_to_int32_xrninta(dec128, signalingFlags);
default:
return bid128_to_int32_xrnint(dec128, signalingFlags);
}
}
std::int64_t Decimal128::toLongExact(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return toLongExact(&throwAwayFlag, roundMode);
}
std::int64_t Decimal128::toLongExact(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 dec128 = decimal128ToLibraryType(_value);
switch (roundMode) {
case kRoundTiesToEven:
return bid128_to_int64_xrnint(dec128, signalingFlags);
case kRoundTowardNegative:
return bid128_to_int64_xfloor(dec128, signalingFlags);
case kRoundTowardPositive:
return bid128_to_int64_xceil(dec128, signalingFlags);
case kRoundTowardZero:
return bid128_to_int64_xint(dec128, signalingFlags);
case kRoundTiesToAway:
return bid128_to_int64_xrninta(dec128, signalingFlags);
default:
return bid128_to_int64_xrnint(dec128, signalingFlags);
}
}
double Decimal128::toDouble(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return toDouble(&throwAwayFlag, roundMode);
}
double Decimal128::toDouble(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 dec128 = decimal128ToLibraryType(_value);
return bid128_to_binary64(dec128, roundMode, signalingFlags);
}
std::string Decimal128::toString() const {
// If the decimal is a variant of NaN (i.e. sNaN, -NaN, +NaN, etc...) or a variant of
// Inf (i.e. +Inf, Inf, -Inf), return either NaN, Infinity, or -Infinity
if (!isFinite()) {
if (this->isEqual(kPositiveInfinity)) {
return "Infinity";
} else if (this->isEqual(kNegativeInfinity)) {
return "-Infinity";
}
invariant(isNaN());
return "NaN";
}
BID_UINT128 dec128 = decimal128ToLibraryType(_value);
char decimalCharRepresentation[1 /* mantissa sign */ + 34 /* mantissa */ +
1 /* scientific E */ + 1 /* exponent sign */ + 4 /* exponent */ +
1 /* null terminator */];
std::uint32_t idec_signaling_flags = 0;
/**
* Use the library's defined to_string method, which returns a string composed of a
* sign ('+' or '-')
* 1 to 34 decimal digits (no leading zeros)
* the character 'E'
* sign ('+' or '-')
* 1 to 4 decimal digits (no leading zeros)
* For example: +10522E-3
*/
bid128_to_string(decimalCharRepresentation, dec128, &idec_signaling_flags);
StringData dec128String(decimalCharRepresentation);
int ePos = dec128String.find("E");
// Calculate the precision and exponent of the number and output it in a readable manner
int precision = 0;
int exponent = 0;
StringData exponentString = dec128String.substr(ePos);
// Get the value of the exponent, start at 2 to ignore the E and the sign
for (size_t i = 2; i < exponentString.size(); ++i) {
exponent = exponent * 10 + (exponentString[i] - '0');
}
if (exponentString[1] == '-') {
exponent *= -1;
}
// Get the total precision of the number, i.e. the length of the coefficient
precision = dec128String.size() - exponentString.size() - 1 /* mantissa sign */;
std::string result;
// Initially result is set to equal just the sign of the dec128 string
// For formatting, leave off the sign if it is positive
if (dec128String[0] == '-')
result = "-";
StringData coefficient = dec128String.substr(1, precision);
int adjustedExponent = exponent + precision - 1;
if (exponent > 0 || adjustedExponent < -6) {
result += _convertToScientificNotation(coefficient, adjustedExponent);
} else {
result += _convertToStandardDecimalNotation(coefficient, exponent);
}
return result;
}
std::string Decimal128::_convertToScientificNotation(StringData coefficient,
int adjustedExponent) const {
int cLength = coefficient.size();
std::string result;
for (int i = 0; i < cLength; i++) {
result += coefficient[i];
if (i == 0 && cLength > 1) {
result += '.';
}
}
result += 'E';
if (adjustedExponent > 0) {
result += '+';
}
result += std::to_string(adjustedExponent);
return result;
}
std::string Decimal128::_convertToStandardDecimalNotation(StringData coefficient,
int exponent) const {
if (exponent == 0) {
return coefficient.toString();
} else {
invariant(exponent < 0);
std::string result;
int precision = coefficient.size();
// Absolute value of the exponent
int significantDecimalDigits = -exponent;
bool decimalAppended = false;
// Pre-pend 0's before the coefficient as necessary
for (int i = precision; i <= significantDecimalDigits; i++) {
result += '0';
if (i == precision) {
result += '.';
decimalAppended = true;
}
}
// Copy over the digits in the coefficient
for (int i = 0; i < precision; i++) {
if (precision - i == significantDecimalDigits && !decimalAppended) {
result += '.';
}
result += coefficient[i];
}
return result;
}
}
bool Decimal128::isZero() const {
return bid128_isZero(decimal128ToLibraryType(_value));
}
bool Decimal128::isNaN() const {
return bid128_isNaN(decimal128ToLibraryType(_value));
}
bool Decimal128::isInfinite() const {
return bid128_isInf(decimal128ToLibraryType(_value));
}
bool Decimal128::isFinite() const {
return bid128_isFinite(decimal128ToLibraryType(_value));
}
bool Decimal128::isNegative() const {
return bid128_isSigned(decimal128ToLibraryType(_value));
}
Decimal128 Decimal128::add(const Decimal128& other, RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return add(other, &throwAwayFlag, roundMode);
}
Decimal128 Decimal128::add(const Decimal128& other,
std::uint32_t* signalingFlags,
RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 addend = decimal128ToLibraryType(other.getValue());
current = bid128_add(current, addend, roundMode, signalingFlags);
Decimal128::Value value = libraryTypeToValue(current);
Decimal128 result(value);
return result;
}
Decimal128 Decimal128::subtract(const Decimal128& other, RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return subtract(other, &throwAwayFlag, roundMode);
}
Decimal128 Decimal128::subtract(const Decimal128& other,
std::uint32_t* signalingFlags,
RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 sub = decimal128ToLibraryType(other.getValue());
current = bid128_sub(current, sub, roundMode, signalingFlags);
Decimal128::Value value = libraryTypeToValue(current);
Decimal128 result(value);
return result;
}
Decimal128 Decimal128::multiply(const Decimal128& other, RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return multiply(other, &throwAwayFlag, roundMode);
}
Decimal128 Decimal128::multiply(const Decimal128& other,
std::uint32_t* signalingFlags,
RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 factor = decimal128ToLibraryType(other.getValue());
current = bid128_mul(current, factor, roundMode, signalingFlags);
Decimal128::Value value = libraryTypeToValue(current);
Decimal128 result(value);
return result;
}
Decimal128 Decimal128::divide(const Decimal128& other, RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return divide(other, &throwAwayFlag, roundMode);
}
Decimal128 Decimal128::divide(const Decimal128& other,
std::uint32_t* signalingFlags,
RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 divisor = decimal128ToLibraryType(other.getValue());
current = bid128_div(current, divisor, roundMode, signalingFlags);
Decimal128::Value value = libraryTypeToValue(current);
Decimal128 result(value);
return result;
}
Decimal128 Decimal128::exponential(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return exponential(&throwAwayFlag);
}
Decimal128 Decimal128::exponential(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
current = bid128_exp(current, roundMode, signalingFlags);
return Decimal128{libraryTypeToValue(current)};
}
Decimal128 Decimal128::logarithm(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return logarithm(&throwAwayFlag);
}
Decimal128 Decimal128::logarithm(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
current = bid128_log(current, roundMode, signalingFlags);
return Decimal128{libraryTypeToValue(current)};
}
Decimal128 Decimal128::logarithm(const Decimal128& other, RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
if (other.isEqual(Decimal128(2))) {
BID_UINT128 current = decimal128ToLibraryType(_value);
current = bid128_log2(current, roundMode, &throwAwayFlag);
return Decimal128{libraryTypeToValue(current)};
}
if (other.isEqual(Decimal128(10))) {
BID_UINT128 current = decimal128ToLibraryType(_value);
current = bid128_log10(current, roundMode, &throwAwayFlag);
return Decimal128{libraryTypeToValue(current)};
}
return logarithm(other, &throwAwayFlag);
}
Decimal128 Decimal128::logarithm(const Decimal128& other,
std::uint32_t* signalingFlags,
RoundingMode roundMode) const {
return logarithm(signalingFlags, roundMode).divide(other);
}
Decimal128 Decimal128::modulo(const Decimal128& other) const {
std::uint32_t throwAwayFlag = 0;
return modulo(other, &throwAwayFlag);
}
Decimal128 Decimal128::modulo(const Decimal128& other, std::uint32_t* signalingFlags) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 divisor = decimal128ToLibraryType(other.getValue());
current = bid128_fmod(current, divisor, signalingFlags);
return Decimal128{libraryTypeToValue(current)};
}
Decimal128 Decimal128::power(const Decimal128& other, RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return power(other, &throwAwayFlag, roundMode);
}
Decimal128 Decimal128::power(const Decimal128& other,
std::uint32_t* signalingFlags,
RoundingMode roundMode) const {
BID_UINT128 base = decimal128ToLibraryType(_value);
BID_UINT128 exp = decimal128ToLibraryType(other.getValue());
BID_UINT128 result;
if (this->isEqual(Decimal128(10)))
result = bid128_exp10(exp, roundMode, signalingFlags);
else if (this->isEqual(Decimal128(2)))
result = bid128_exp2(exp, roundMode, signalingFlags);
else
result = bid128_pow(base, exp, roundMode, signalingFlags);
return Decimal128{libraryTypeToValue(result)}.add(kLargestNegativeExponentZero);
}
Decimal128 Decimal128::quantize(const Decimal128& other, RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return quantize(other, &throwAwayFlag, roundMode);
}
Decimal128 Decimal128::quantize(const Decimal128& reference,
std::uint32_t* signalingFlags,
RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 q = decimal128ToLibraryType(reference.getValue());
BID_UINT128 quantizedResult = bid128_quantize(current, q, roundMode, signalingFlags);
Decimal128::Value value = libraryTypeToValue(quantizedResult);
Decimal128 result(value);
return result;
}
Decimal128 Decimal128::squareRoot(RoundingMode roundMode) const {
std::uint32_t throwAwayFlag = 0;
return exponential(&throwAwayFlag);
}
Decimal128 Decimal128::squareRoot(std::uint32_t* signalingFlags, RoundingMode roundMode) const {
BID_UINT128 current = decimal128ToLibraryType(_value);
current = bid128_sqrt(current, roundMode, signalingFlags);
return Decimal128{libraryTypeToValue(current)};
}
bool Decimal128::isEqual(const Decimal128& other) const {
std::uint32_t throwAwayFlag = 0;
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 compare = decimal128ToLibraryType(other.getValue());
return bid128_quiet_equal(current, compare, &throwAwayFlag);
}
bool Decimal128::isNotEqual(const Decimal128& other) const {
std::uint32_t throwAwayFlag = 0;
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 compare = decimal128ToLibraryType(other.getValue());
return bid128_quiet_not_equal(current, compare, &throwAwayFlag);
}
bool Decimal128::isGreater(const Decimal128& other) const {
std::uint32_t throwAwayFlag = 0;
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 compare = decimal128ToLibraryType(other.getValue());
return bid128_quiet_greater(current, compare, &throwAwayFlag);
}
bool Decimal128::isGreaterEqual(const Decimal128& other) const {
std::uint32_t throwAwayFlag = 0;
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 compare = decimal128ToLibraryType(other.getValue());
return bid128_quiet_greater_equal(current, compare, &throwAwayFlag);
}
bool Decimal128::isLess(const Decimal128& other) const {
std::uint32_t throwAwayFlag = 0;
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 compare = decimal128ToLibraryType(other.getValue());
return bid128_quiet_less(current, compare, &throwAwayFlag);
}
bool Decimal128::isLessEqual(const Decimal128& other) const {
std::uint32_t throwAwayFlag = 0;
BID_UINT128 current = decimal128ToLibraryType(_value);
BID_UINT128 compare = decimal128ToLibraryType(other.getValue());
return bid128_quiet_less_equal(current, compare, &throwAwayFlag);
}
/**
* The following static const variables are used to mathematically produce
* frequently needed Decimal128 constants.
*/
namespace {
// Get the representation of 1 with 17 zeros (half of decimal128's 34 digit precision)
const std::uint64_t t17 = 100ull * 1000 * 1000 * 1000 * 1000 * 1000;
// Get the low 64 bits of 34 consecutive decimal 9's
// t17 * 17 gives 1 with 34 0's, so subtract 1 to get all 9's == 4003012203950112767
// Using the computed constant avoids a MSVC warning.
// Computed by running the calculations in Python, and verified with static_assert.
const std::uint64_t t34lo64 = 4003012203950112767ULL;
#if defined(__GNUC__)
static_assert(t34lo64 == t17 * t17 - 1, "precomputed constant is wrong");
#endif
// Mod t17 by 2^32 to get the low 32 bits of t17's binary representation
const std::uint64_t t17lo32 = t17 % (1ull << 32);
// Divide t17 by 2^32 to get the high 32 bits of t17's binary representation
const std::uint64_t t17hi32 = t17 >> 32;
// Multiply t17 by t17 and keep the high 64 bits by distributing the operation to
// t17hi32*t17hi32 + 2*t17hi32*t17lo32 + t17lo32*t17lo32 where the 2nd term
// is shifted right by 32 and the 3rd term by 64 (which effectively drops the 3rd term)
const std::uint64_t t34hi64 = t17hi32 * t17hi32 + (((t17hi32 * t17lo32) >> 31));
MONGO_STATIC_ASSERT(t34hi64 == 0x1ed09bead87c0);
MONGO_STATIC_ASSERT(t34lo64 == 0x378d8e63ffffffff);
} // namespace
// (t34hi64 << 64) + t34lo64 == 1e34 - 1
const Decimal128 Decimal128::kLargestPositive(0, Decimal128::kMaxBiasedExponent, t34hi64, t34lo64);
// The smallest positive decimal is 1 with the largest negative exponent of 0 (biased)
const Decimal128 Decimal128::kSmallestPositive(0, 0, 0, 1);
// Add a sign bit to the largest and smallest positive to get their corresponding negatives
const Decimal128 Decimal128::kLargestNegative(1, Decimal128::kMaxBiasedExponent, t34hi64, t34lo64);
const Decimal128 Decimal128::kSmallestNegative(1, 0, 0, 1);
// Get the representation of 0 (0E0).
const Decimal128 Decimal128::kNormalizedZero(Decimal128::Value(
{0, static_cast<uint64_t>(Decimal128::kExponentBias) << Decimal128::kExponentFieldPos}));
// Get the representation of 0 with the most negative exponent
const Decimal128 Decimal128::kLargestNegativeExponentZero(Decimal128::Value({0ull, 0ull}));
// Shift the format of the combination bits to the right position to get Inf and NaN
// +Inf = 0111 1000 ... ... = 0x78 ... ..., -Inf = 1111 1000 ... ... = 0xf8 ... ...
// +NaN = 0111 1100 ... ... = 0x7c ... ..., -NaN = 1111 1100 ... ... = 0xfc ... ...
const Decimal128 Decimal128::kPositiveInfinity(Decimal128::Value({0ull, 0x78ull << 56}));
const Decimal128 Decimal128::kNegativeInfinity(Decimal128::Value({0ull, 0xf8ull << 56}));
const Decimal128 Decimal128::kPositiveNaN(Decimal128::Value({0ull, 0x7cull << 56}));
const Decimal128 Decimal128::kNegativeNaN(Decimal128::Value({0ull, 0xfcull << 56}));
std::ostream& operator<<(std::ostream& stream, const Decimal128& value) {
return stream << value.toString();
}
} // namespace mongo
|