summaryrefslogtreecommitdiff
path: root/src/mongo/platform/decimal128.h
blob: 6ad7b21bb3eccb80072f28ef6c5364c2ffc73c85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#pragma once

#include <array>
#include <climits>
#include <cstdint>
#include <iostream>
#include <string>
#include <type_traits>
#include <utility>

#include "mongo/config.h"

#include "mongo/util/assert_util.h"

namespace mongo {

/**
 * Wrapper class for the MongoDB Decimal128 data type. Sample usage:
 *     Decimal128 d1("+10.0");
 *     Decimal128 d2("+0.1")
 *     Decimal128 sum = d1.add(d2)
 *     std::cout << sum << std::endl;
 */
class Decimal128 {
public:
    /**
     * Static constants to get Decimal128 representations of specific numbers
     * kLargestPositive -> 9999999999999999999999999999999999E6111
     * kSmallestPositive -> 1E-6176
     * kLargestNegative -> -9999999999999999999999999999999999E6111
     * kSmallestNegative -> -1E-6176
     * kLargestNegativeExponentZero -> 0E-6176
     */
    static const Decimal128 kLargestPositive;
    static const Decimal128 kSmallestPositive;
    static const Decimal128 kLargestNegative;
    static const Decimal128 kSmallestNegative;

    static const Decimal128 kNormalizedZero;  // zero with exponent 0
    static const Decimal128 kLargestNegativeExponentZero;

    static const Decimal128 kPositiveInfinity;
    static const Decimal128 kNegativeInfinity;
    static const Decimal128 kPositiveNaN;
    static const Decimal128 kNegativeNaN;

    static const Decimal128 kPi;
    static const Decimal128 kPiOver180;
    static const Decimal128 k180OverPi;

    static constexpr std::uint32_t kMaxBiasedExponent = 6143 + 6144;
    // Biased exponent of a Decimal128 with least significant digit in the units place
    static constexpr std::int32_t kExponentBias = 6143 + 33;
    static constexpr std::uint32_t kInfinityExponent =
        kMaxBiasedExponent + 1;  // internal convention only

    /**
     * This struct holds the raw data for IEEE 754-2008 data types
     */
    struct Value {
        std::uint64_t low64;
        std::uint64_t high64;
    };

    enum RoundingMode {
        kRoundTiesToEven = 0,
        kRoundTowardNegative = 1,
        kRoundTowardPositive = 2,
        kRoundTowardZero = 3,
        kRoundTiesToAway = 4
    };

    /**
     * Indicates if constructing a Decimal128 from a double should round the double to 15 digits
     * (so the conversion will correctly round-trip decimals), or round to the full 34 digits.
     */
    enum RoundingPrecision { kRoundTo15Digits = 0, kRoundTo34Digits = 1 };

    /**
     * The signaling flag enum determines the signaling nature of a decimal operation.
     * The values of these flags are defined in the Intel RDFP math library.
     *
     * The provided hasFlag method checks whether provided signalingFlags contains flag f.
     *
     * Example:
     *     Decimal128 dcml = Decimal128('0.1');
     *     std::uint32_t sigFlag = Decimal128::SignalingFlag::kNoFlag;
     *     double dbl = dcml.toDouble(&sigFlag);
     *     if Decimal128::hasFlag(sigFlag, SignalingFlag::kInexact)
     *         cout << "inexact decimal to double conversion!" << endl;
     */
    enum SignalingFlag {
        kNoFlag = 0x00,
        kInvalid = 0x01,
        kDivideByZero = 0x04,
        kOverflow = 0x08,
        kUnderflow = 0x10,
        kInexact = 0x20,
    };

    constexpr static bool hasFlag(std::uint32_t signalingFlags, SignalingFlag f) {
        return ((signalingFlags & f) != 0u);
    }

    /**
     * Returns true if a valid Decimal can be constructed from the given arguments.
     */
    constexpr static bool isValid(std::uint64_t sign,
                                  std::uint64_t exponent,
                                  std::uint64_t coefficientHigh,
                                  std::uint64_t coefficientLow) {
        if (coefficientHigh >= 0x1ed09bead87c0 &&
            (coefficientHigh != 0x1ed09bead87c0 || coefficientLow != 0x378d8e63ffffffff)) {
            return false;
        }
        auto value =
            Value{coefficientLow,
                  (sign << kSignFieldPos) | (exponent << kExponentFieldPos) | coefficientHigh};

        return Decimal128(value).getBiasedExponent() == exponent;
    }

    /**
     * Construct a 0E0 valued Decimal128.
     */
    constexpr Decimal128()
        : _value{0,
                 static_cast<std::uint64_t>(Decimal128::kExponentBias)
                     << Decimal128::kExponentFieldPos} {}

    /**
     * This constructor takes in a raw decimal128 type, which consists of two
     * uint64_t's. This class performs an endian check on the system to ensure
     * that the Value.high64 represents the higher 64 bits.
     */
    constexpr explicit Decimal128(Decimal128::Value dec128Value) : _value(dec128Value) {}

    /**
     * Constructs a Decimal128 from parts, dealing with proper encoding of the combination field.
     * Assumes that the value will be inside the valid range of finite values. (No NaN/Inf, etc.)
     */
    constexpr Decimal128(std::uint64_t sign,
                         std::uint64_t exponent,
                         std::uint64_t coefficientHigh,
                         std::uint64_t coefficientLow)
        : _value(_valueFromParts(sign, exponent, coefficientHigh, coefficientLow)) {}

    template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>>
    constexpr explicit Decimal128(T v)
        : Decimal128(v < 0 ? 1 : 0, kExponentBias, 0, _makeCoefficientLow(v)) {}

    /**
     * This constructor takes a double and constructs a Decimal128 object given a roundMode, either
     * to full precision, or with a fixed precision of 15 decimal digits. When a double is used to
     * store a decimal floating point number, it is only correct up to 15 digits after converting
     * back to decimal, so the 15 digit rounding is used for mixed-mode operations.
     * The general idea is to quantize the direct double->dec128 conversion
     * with a quantum of 1E(-15 +/- base10 exponent equivalent of the double).
     * To do this, we find the smallest (abs value) base 10 exponent greater
     * than the double's base 2 exp and shift the quantizer's exp accordingly.
     */
    explicit Decimal128(double doubleValue,
                        RoundingPrecision roundPrecision = kRoundTo15Digits,
                        RoundingMode roundMode = kRoundTiesToEven);

    /**
     * This constructor takes a string and constructs a Decimal128 object from it.
     * Inputs larger than 34 digits of precision are rounded according to the
     * specified rounding mode. The following (and variations) are all accepted:
     * "+2.02E200"
     * "2.02E+200"
     * "-202E-500"
     * "somethingE200" --> NaN
     * "200E9999999999" --> +Inf
     * "-200E9999999999" --> -Inf
     */
    explicit Decimal128(std::string stringValue,
                        RoundingMode roundMode = kRoundTiesToEven,
                        size_t* charsConsumed = nullptr);

    Decimal128(std::string stringValue,
               std::uint32_t* signalingFlag,
               RoundingMode roundMode = kRoundTiesToEven,
               size_t* charsConsumed = nullptr);

    /**
     * This function gets the inner Value struct storing a Decimal128 value.
     */
    constexpr Value getValue() const {
        return _value;
    }

    /**
     *  Extracts the biased exponent from the combination field.
     */
    constexpr std::uint32_t getBiasedExponent() const {
        const std::uint64_t combo = _getCombinationField();
        if (combo < kCombinationNonCanonical)
            return combo >> 3;

        return combo >= kCombinationInfinity
            ? kMaxBiasedExponent + 1           // NaN or Inf
            : (combo >> 1) & ((1 << 14) - 1);  // non-canonical representation
    }

    /**
     * Returns the high 49 bits of the 113-bit binary encoded coefficient. Returns 0 for
     * non-canonical or non-finite numbers.
     */
    constexpr std::uint64_t getCoefficientHigh() const {
        return _getCombinationField() < kCombinationNonCanonical
            ? _value.high64 & kCanonicalCoefficientHighFieldMask
            : 0;
    }

    /**
     * Returns the low 64 bits of the 113-bit binary encoded coefficient. Returns 0 for
     * non-canonical or non-finite numbers.
     */
    constexpr std::uint64_t getCoefficientLow() const {
        return _getCombinationField() < kCombinationNonCanonical ? _value.low64 : 0;
    }

    /**
     * Returns the absolute value of this.
     */
    Decimal128 toAbs() const;

    /**
     * Returns the acos value of this.
     */
    Decimal128 acos(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 acos(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the acosh value of this.
     */
    Decimal128 acosh(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 acosh(std::uint32_t* signalingFlags,
                     RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the asin value of this.
     */
    Decimal128 asin(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 asin(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the asinh value of this.
     */
    Decimal128 asinh(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 asinh(std::uint32_t* signalingFlags,
                     RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the atan value of this.
     */
    Decimal128 atan(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 atan(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the atan2(this, other) rather than atan2(other,this), which
     * would produce different results.
     */
    Decimal128 atan2(const Decimal128& other, RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 atan2(const Decimal128& other,
                     std::uint32_t* signalingFlags,
                     RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the atanh value of this.
     */
    Decimal128 atanh(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 atanh(std::uint32_t* signalingFlags,
                     RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the cos value of this.
     */
    Decimal128 cos(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 cos(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the cosh value of this.
     */
    Decimal128 cosh(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 cosh(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the sin value of this.
     */
    Decimal128 sin(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 sin(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the sinh value of this.
     */
    Decimal128 sinh(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 sinh(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;
    /**
     * Returns the tan value of this.
     */
    Decimal128 tan(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 tan(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * Returns the tanh value of this.
     */
    Decimal128 tanh(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 tanh(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;


    /**
     * Returns `this` with inverted sign bit
     */
    constexpr Decimal128 negate() const {
        return Decimal128(Value{_value.low64, _value.high64 ^ (std::uint64_t{1} << 63)});
    }

    /**
     * This set of functions converts a Decimal128 to a certain integer type with a
     * given rounding mode.
     *
     * Each function is overloaded to provide an optional signalingFlags output parameter
     * that can be set to one of the Decimal128::SignalingFlag enumerators:
     * kNoFlag, kInvalid
     *
     * Note: The signaling flags for these functions only signal
     * an invalid conversion. If inexact conversion flags are necessary, call
     * the toTypeExact version of the function defined below. This set of operations
     * (toInt, toLong) has better performance than the latter.
     */
    std::int32_t toInt(RoundingMode roundMode = kRoundTiesToEven) const;
    std::int32_t toInt(std::uint32_t* signalingFlags,
                       RoundingMode roundMode = kRoundTiesToEven) const;
    std::int64_t toLong(RoundingMode roundMode = kRoundTiesToEven) const;
    std::int64_t toLong(std::uint32_t* signalingFlags,
                        RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * This set of functions converts a Decimal128 to a certain integer type with a
     * given rounding mode. The signaling flags for these functions will also signal
     * inexact computation.
     *
     * Each function is overloaded to provide an optional signalingFlags output parameter
     * that can be set to one of the Decimal128::SignalingFlag enumerators:
     * kNoFlag, kInexact, kInvalid
     */
    std::int32_t toIntExact(RoundingMode roundMode = kRoundTiesToEven) const;
    std::int32_t toIntExact(std::uint32_t* signalingFlags,
                            RoundingMode roundMode = kRoundTiesToEven) const;
    std::int64_t toLongExact(RoundingMode roundMode = kRoundTiesToEven) const;
    std::int64_t toLongExact(std::uint32_t* signalingFlags,
                             RoundingMode roundMode = kRoundTiesToEven) const;
    std::uint64_t toULongExact(RoundingMode roundMode = kRoundTiesToEven) const;
    std::uint64_t toULongExact(std::uint32_t* signalingFlags,
                               RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * These functions convert decimals to doubles and have the ability to signal
     * inexact, underflow, overflow, and invalid operation.
     *
     * This function is overloaded to provide an optional signalingFlags output parameter
     * that can be set to one of the Decimal128::SignalingFlag enumerators:
     * kNoFlag, kInexact, kUnderflow, kOverflow, kInvalid
     */
    double toDouble(RoundingMode roundMode = kRoundTiesToEven) const;
    double toDouble(std::uint32_t* signalingFlags, RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * This function converts a Decimal128 to a string with the following semantics:
     *
     * Suppose Decimal128 D has P significant digits and exponent Exp.
     * Define SE to be the scientific exponent of D equal to Exp + P - 1.
     *
     * Define format E as normalized scientific notation (ex: 1.0522E+16)
     * Define format F as a regular formatted number with no exponent (ex: 105.22)
     *
     * In order to improve decimal type readability,
     * if SE >= 12 or SE <= -4, use format E to display D.
     * if Exp > 0, use format E to display D because adding trailing zeros implies
     * extra, incorrect precision
     *
     * Otherwise, display using F with no exponent (add leading zeros if necessary).
     *
     * This conversion to string is roughly based on the G C99 printf specifier and
     * existing behavior for the double numeric type in MongoDB.
     */
    std::string toString() const;

    /**
     * This set of functions check whether a Decimal128 is Zero, NaN, or +/- Inf
     */
    bool isZero() const;
    bool isNaN() const;
    bool isInfinite() const;
    bool isNegative() const;

    /**
     * Return true if and only if a Decimal128 is Zero, Normal, or Subnormal (not Inf or NaN)
     */
    bool isFinite() const;

    /**
     * This set of mathematical operation functions implement the corresponding
     * IEEE 754-2008 operations on self and other.
     * The 'add' and 'multiply' methods are commutative, so a.add(b) is equivalent to b.add(a).
     * Rounding of results that require a precision greater than 34 decimal digits
     * is performed using the supplied rounding mode (defaulting to kRoundTiesToEven).
     * NaNs and infinities are handled according to the IEEE 754-2008 specification.
     *
     * Each function is overloaded to provide an optional signalingFlags output parameter
     * that can be set to one of the Decimal128::SignalingFlag enumerators:
     * kNoFlag, kInexact, kUnderflow, kOverflow, kInvalid
     *
     * The divide operation may also set signalingFlags to kDivideByZero
     */
    Decimal128 add(const Decimal128& other, RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 add(const Decimal128& other,
                   std::uint32_t* signalingFlags,
                   RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 subtract(const Decimal128& other, RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 subtract(const Decimal128& other,
                        std::uint32_t* signalingFlags,
                        RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 multiply(const Decimal128& other, RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 multiply(const Decimal128& other,
                        std::uint32_t* signalingFlags,
                        RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 divide(const Decimal128& other, RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 divide(const Decimal128& other,
                      std::uint32_t* signalingFlags,
                      RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 exponential(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 exponential(std::uint32_t* signalingFlags,
                           RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 logarithm(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 logarithm(std::uint32_t* signalingFlags,
                         RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 logarithm(const Decimal128& other, RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 logarithm(const Decimal128& other,
                         std::uint32_t* signalingFlags,
                         RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 modulo(const Decimal128& other) const;
    Decimal128 modulo(const Decimal128& other, std::uint32_t* signalingFlags) const;

    Decimal128 power(const Decimal128& other, RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 power(const Decimal128& other,
                     std::uint32_t* signalingFlags,
                     RoundingMode roundMode = kRoundTiesToEven) const;

    Decimal128 squareRoot(RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 squareRoot(std::uint32_t* signalingFlags,
                          RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * This function quantizes the current decimal given a quantum reference
     */
    Decimal128 quantize(const Decimal128& reference,
                        RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 quantize(const Decimal128& reference,
                        std::uint32_t* signalingFlags,
                        RoundingMode roundMode = kRoundTiesToEven) const;

    /**
     * This function normalizes the cohort of a Decimal128 by forcing it to maximum
     * precision (34 decimal digits). This normalization is important when it is desirable
     * to force equal decimals of different representations (i.e. 5.0 and 5.00) to equal
     * decimals with the same representation (5000000000000000000000000000000000E-33).
     * Hashing equal decimals to equal hashes becomes possible with such normalization.
     */
    Decimal128 normalize() const {
        // Normalize by adding 0E-6176 which forces a decimal to maximum precision (34 digits)
        return add(kLargestNegativeExponentZero);
    }

    /**
     * This set of comparison operations takes a single Decimal128 and returns a boolean
     * noting the value of the comparison. These comparisons are not total ordered, but
     * comply with the IEEE 754-2008 spec. The comparison returns true if the caller
     * is <equal, notequal, greater, greaterequal, less, lessequal> the argument (other).
     */
    bool isEqual(const Decimal128& other) const;
    bool isNotEqual(const Decimal128& other) const;
    bool isGreater(const Decimal128& other) const;
    bool isGreaterEqual(const Decimal128& other) const;
    bool isLess(const Decimal128& other) const;
    bool isLessEqual(const Decimal128& other) const;

    /**
     * Returns true iff 'this' and 'other' are bitwise identical. Note that this returns false
     * even for values that may convert to identical strings, such as different NaNs or
     * non-canonical representations that represent bit-patterns never generated by any conforming
     * implementation, but should be treated as 0. Mostly for testing.
     */
    bool isBinaryEqual(const Decimal128& other) const {
        return _value.high64 == other._value.high64 && _value.low64 == other._value.low64;
    }

    constexpr Decimal128 operator-() const {
        return negate();
    }

    constexpr Decimal128 operator+() const {
        return *this;
    }

private:
    constexpr static std::uint8_t kSignFieldPos = 64 - 1;
    constexpr static std::uint8_t kCombinationFieldPos = kSignFieldPos - 17;
    constexpr static std::uint64_t kCombinationFieldMask = (1 << 17) - 1;
    constexpr static std::uint64_t kExponentFieldPos = kCombinationFieldPos + 3;
    constexpr static std::uint64_t kCoefficientContinuationFieldMask =
        (1ull << kCombinationFieldPos) - 1;
    constexpr static std::uint64_t kCombinationNonCanonical = 3 << 15;
    constexpr static std::uint64_t kCombinationInfinity = 0x1e << 12;
    constexpr static std::uint64_t kCombinationNaN = 0x1f << 12;
    constexpr static std::uint64_t kCanonicalCoefficientHighFieldMask = (1ull << 49) - 1;

    std::string _convertToScientificNotation(StringData coefficient, int adjustedExponent) const;
    std::string _convertToStandardDecimalNotation(StringData coefficient, int exponent) const;

    /**
     * This function quantizes the current decimal given a quantum reference without normalizing its
     * arguments.
     */
    Decimal128 nonNormalizingQuantize(const Decimal128& reference,
                                      RoundingMode roundMode = kRoundTiesToEven) const;
    Decimal128 nonNormalizingQuantize(const Decimal128& reference,
                                      std::uint32_t* signalingFlags,
                                      RoundingMode roundMode = kRoundTiesToEven) const;

    constexpr std::uint64_t _getCombinationField() const {
        return (_value.high64 >> kCombinationFieldPos) & kCombinationFieldMask;
    }

    constexpr static Value _valueFromParts(std::uint64_t sign,
                                           std::uint64_t exponent,
                                           std::uint64_t coefficientHigh,
                                           std::uint64_t coefficientLow) {
        // For constexpr's sake the invariant must be compiled only if !isValid().
        if (!isValid(sign, exponent, coefficientHigh, coefficientLow)) {
            invariant(false, "invalid arguments to Decimal128 constructor");
        }

        return Value{coefficientLow,
                     (sign << kSignFieldPos) | (exponent << kExponentFieldPos) | coefficientHigh};
    }

    // The absolute value of constexpr `i` as a uint64_t, avoiding warnings.
    template <typename T>
    constexpr std::uint64_t _makeCoefficientLow(T i) {
        if constexpr (std::is_signed_v<T>) {
            if (i < 0) {
                std::make_unsigned_t<T> ui = i;
                ui = ~ui + 1;  // Negation, without MSVC C4146.
                return static_cast<std::uint64_t>(ui);
            } else {
                return static_cast<std::uint64_t>(i);
            }
        } else {
            return static_cast<std::uint64_t>(i);
        }
    }

    Value _value;
};

inline Decimal128 operator"" _dec128(const char* s) {
    return Decimal128(s);
}

inline Decimal128 operator"" _dec128(const char* s, std::size_t len) {
    return Decimal128(std::string(s, len));
}

}  // namespace mongo