summaryrefslogtreecommitdiff
path: root/src/mongo/s/chunk_manager.cpp
blob: 9ded562066c0feb6be4252ef60ccef1704fffd66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kSharding

#include "mongo/platform/basic.h"

#include "mongo/s/chunk_manager.h"

#include "mongo/base/owned_pointer_vector.h"
#include "mongo/bson/simple_bsonobj_comparator.h"
#include "mongo/db/matcher/extensions_callback_noop.h"
#include "mongo/db/query/collation/collation_index_key.h"
#include "mongo/db/query/index_bounds_builder.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/query_planner_common.h"
#include "mongo/db/storage/key_string.h"
#include "mongo/logv2/log.h"
#include "mongo/s/chunk_writes_tracker.h"
#include "mongo/s/mongod_and_mongos_server_parameters_gen.h"
#include "mongo/s/shard_invalidated_for_targeting_exception.h"

namespace mongo {
namespace {

bool allElementsAreOfType(BSONType type, const BSONObj& obj) {
    for (auto&& elem : obj) {
        if (elem.type() != type) {
            return false;
        }
    }
    return true;
}

void checkAllElementsAreOfType(BSONType type, const BSONObj& o) {
    uassert(ErrorCodes::ConflictingOperationInProgress,
            str::stream() << "Not all elements of " << o << " are of type " << typeName(type),
            allElementsAreOfType(type, o));
}

void appendChunkTo(std::vector<std::shared_ptr<ChunkInfo>>& chunks,
                   const std::shared_ptr<ChunkInfo>& chunk) {
    if (!chunks.empty() && chunk->getRange().overlaps(chunks.back()->getRange())) {
        if (chunk->getLastmod() > chunks.back()->getLastmod()) {
            chunks.pop_back();
            chunks.push_back(chunk);
        }
    } else {
        chunks.push_back(chunk);
    }
}

// This function processes the passed in chunks by removing the older versions of any overlapping
// chunks. The resulting chunks must be ordered by the maximum bound and not have any
// overlapping chunks. In order to process the original set of chunks correctly which may have
// chunks from older versions of the map that overlap, this algorithm would need to sort by
// ascending minimum bounds before processing it. However, since we want to take advantage of the
// precomputed KeyString representations of the maximum bounds, this function implements the same
// algorithm by reverse sorting the chunks by the maximum before processing but then must
// reverse the resulting collection before it is returned.
std::vector<std::shared_ptr<ChunkInfo>> flatten(const std::vector<ChunkType>& changedChunks) {
    if (changedChunks.empty())
        return std::vector<std::shared_ptr<ChunkInfo>>();

    std::vector<std::shared_ptr<ChunkInfo>> changedChunkInfos(changedChunks.size());
    std::transform(changedChunks.begin(),
                   changedChunks.end(),
                   changedChunkInfos.begin(),
                   [](const auto& c) { return std::make_shared<ChunkInfo>(c); });

    std::sort(changedChunkInfos.begin(), changedChunkInfos.end(), [](const auto& a, const auto& b) {
        return a->getMaxKeyString() > b->getMaxKeyString();
    });

    std::vector<std::shared_ptr<ChunkInfo>> flattened;
    flattened.reserve(changedChunkInfos.size());
    flattened.push_back(changedChunkInfos[0]);

    for (size_t i = 1; i < changedChunkInfos.size(); ++i) {
        appendChunkTo(flattened, changedChunkInfos[i]);
    }

    std::reverse(flattened.begin(), flattened.end());

    return flattened;
}

}  // namespace

ShardVersionMap ChunkMap::constructShardVersionMap() const {
    ShardVersionMap shardVersions;
    ChunkVector::const_iterator current = _chunkMap.cbegin();

    boost::optional<BSONObj> firstMin = boost::none;
    boost::optional<BSONObj> lastMax = boost::none;

    while (current != _chunkMap.cend()) {
        const auto& firstChunkInRange = *current;
        const auto& currentRangeShardId = firstChunkInRange->getShardIdAt(boost::none);

        // Tracks the max shard version for the shard on which the current range will reside
        auto shardVersionIt = shardVersions.find(currentRangeShardId);
        if (shardVersionIt == shardVersions.end()) {
            shardVersionIt =
                shardVersions.emplace(currentRangeShardId, _collectionVersion.epoch()).first;
        }

        auto& maxShardVersion = shardVersionIt->second.shardVersion;

        current =
            std::find_if(current,
                         _chunkMap.cend(),
                         [&currentRangeShardId, &maxShardVersion](const auto& currentChunk) {
                             if (currentChunk->getShardIdAt(boost::none) != currentRangeShardId)
                                 return true;

                             if (currentChunk->getLastmod() > maxShardVersion)
                                 maxShardVersion = currentChunk->getLastmod();

                             return false;
                         });

        const auto rangeLast = *std::prev(current);

        const auto& rangeMin = firstChunkInRange->getMin();
        const auto& rangeMax = rangeLast->getMax();

        // Check the continuity of the chunks map
        if (lastMax && !SimpleBSONObjComparator::kInstance.evaluate(*lastMax == rangeMin)) {
            if (SimpleBSONObjComparator::kInstance.evaluate(*lastMax < rangeMin))
                uasserted(ErrorCodes::ConflictingOperationInProgress,
                          str::stream() << "Gap exists in the routing table between chunks "
                                        << findIntersectingChunk(*lastMax)->getRange().toString()
                                        << " and " << rangeLast->getRange().toString());
            else
                uasserted(ErrorCodes::ConflictingOperationInProgress,
                          str::stream() << "Overlap exists in the routing table between chunks "
                                        << findIntersectingChunk(*lastMax)->getRange().toString()
                                        << " and " << rangeLast->getRange().toString());
        }

        if (!firstMin)
            firstMin = rangeMin;

        lastMax = rangeMax;

        // If a shard has chunks it must have a shard version, otherwise we have an invalid chunk
        // somewhere, which should have been caught at chunk load time
        invariant(maxShardVersion.isSet());
    }

    if (!_chunkMap.empty()) {
        invariant(!shardVersions.empty());
        invariant(firstMin.is_initialized());
        invariant(lastMax.is_initialized());

        checkAllElementsAreOfType(MinKey, firstMin.get());
        checkAllElementsAreOfType(MaxKey, lastMax.get());
    }

    return shardVersions;
}

void ChunkMap::appendChunk(const std::shared_ptr<ChunkInfo>& chunk) {
    appendChunkTo(_chunkMap, chunk);

    _collectionVersion = std::max(_collectionVersion, chunk->getLastmod());
}

std::shared_ptr<ChunkInfo> ChunkMap::findIntersectingChunk(const BSONObj& shardKey) const {
    const auto it = _findIntersectingChunk(shardKey);

    if (it != _chunkMap.end())
        return *it;

    return std::shared_ptr<ChunkInfo>();
}

void validateChunk(const std::shared_ptr<ChunkInfo>& chunk, const ChunkVersion& version) {
    uassert(ErrorCodes::ConflictingOperationInProgress,
            str::stream() << "Changed chunk " << chunk->toString()
                          << " has epoch different from that of the collection " << version.epoch(),
            version.epoch() == chunk->getLastmod().epoch());

    invariant(chunk->getLastmod() >= version);
}

ChunkMap ChunkMap::createMerged(
    const std::vector<std::shared_ptr<ChunkInfo>>& changedChunks) const {
    size_t chunkMapIndex = 0;
    size_t changedChunkIndex = 0;

    ChunkMap updatedChunkMap(getVersion().epoch(), _chunkMap.size() + changedChunks.size());

    while (chunkMapIndex < _chunkMap.size() || changedChunkIndex < changedChunks.size()) {
        if (chunkMapIndex >= _chunkMap.size()) {
            validateChunk(changedChunks[changedChunkIndex], getVersion());
            updatedChunkMap.appendChunk(changedChunks[changedChunkIndex++]);
            continue;
        }

        if (changedChunkIndex >= changedChunks.size()) {
            updatedChunkMap.appendChunk(_chunkMap[chunkMapIndex++]);
            continue;
        }

        auto overlap = _chunkMap[chunkMapIndex]->getRange().overlaps(
            changedChunks[changedChunkIndex]->getRange());

        if (overlap) {
            auto& changedChunk = changedChunks[changedChunkIndex++];
            auto& chunkInfo = _chunkMap[chunkMapIndex];

            auto bytesInReplacedChunk = chunkInfo->getWritesTracker()->getBytesWritten();
            changedChunk->getWritesTracker()->addBytesWritten(bytesInReplacedChunk);

            validateChunk(changedChunk, getVersion());
            updatedChunkMap.appendChunk(changedChunk);
        } else {
            updatedChunkMap.appendChunk(_chunkMap[chunkMapIndex++]);
        }
    }

    return updatedChunkMap;
}

BSONObj ChunkMap::toBSON() const {
    BSONObjBuilder builder;

    builder.append("startingVersion"_sd, getVersion().toBSON());
    builder.append("chunkCount", static_cast<int64_t>(_chunkMap.size()));

    {
        BSONArrayBuilder arrayBuilder(builder.subarrayStart("chunks"_sd));
        for (const auto& chunk : _chunkMap) {
            arrayBuilder.append(chunk->toString());
        }
    }

    return builder.obj();
}

ChunkMap::ChunkVector::const_iterator ChunkMap::_findIntersectingChunk(const BSONObj& shardKey,
                                                                       bool isMaxInclusive) const {
    auto shardKeyString = ShardKeyPattern::toKeyString(shardKey);

    if (!isMaxInclusive) {
        return std::lower_bound(_chunkMap.begin(),
                                _chunkMap.end(),
                                shardKey,
                                [&shardKeyString](const auto& chunkInfo, const BSONObj& shardKey) {
                                    return chunkInfo->getMaxKeyString() < shardKeyString;
                                });
    } else {
        return std::upper_bound(_chunkMap.begin(),
                                _chunkMap.end(),
                                shardKey,
                                [&shardKeyString](const BSONObj& shardKey, const auto& chunkInfo) {
                                    return shardKeyString < chunkInfo->getMaxKeyString();
                                });
    }
}

std::pair<ChunkMap::ChunkVector::const_iterator, ChunkMap::ChunkVector::const_iterator>
ChunkMap::_overlappingBounds(const BSONObj& min, const BSONObj& max, bool isMaxInclusive) const {
    const auto itMin = _findIntersectingChunk(min);
    const auto itMax = [&]() {
        auto it = _findIntersectingChunk(max, isMaxInclusive);
        return it == _chunkMap.end() ? it : ++it;
    }();

    return {itMin, itMax};
}

ShardVersionTargetingInfo::ShardVersionTargetingInfo(const OID& epoch)
    : shardVersion(0, 0, epoch) {}

RoutingTableHistory::RoutingTableHistory(
    NamespaceString nss,
    boost::optional<UUID> uuid,
    KeyPattern shardKeyPattern,
    std::unique_ptr<CollatorInterface> defaultCollator,
    bool unique,
    boost::optional<TypeCollectionReshardingFields> reshardingFields,
    ChunkMap chunkMap)
    : _nss(std::move(nss)),
      _uuid(uuid),
      _shardKeyPattern(shardKeyPattern),
      _defaultCollator(std::move(defaultCollator)),
      _unique(unique),
      _reshardingFields(std::move(reshardingFields)),
      _chunkMap(std::move(chunkMap)),
      _shardVersions(_chunkMap.constructShardVersionMap()) {}

void RoutingTableHistory::setShardStale(const ShardId& shardId) {
    if (gEnableFinerGrainedCatalogCacheRefresh) {
        auto it = _shardVersions.find(shardId);
        if (it != _shardVersions.end()) {
            it->second.isStale.store(true);
        }
    }
}

void RoutingTableHistory::setAllShardsRefreshed() {
    if (gEnableFinerGrainedCatalogCacheRefresh) {
        for (auto& [shard, targetingInfo] : _shardVersions) {
            targetingInfo.isStale.store(false);
        }
    }
}

Chunk ChunkManager::findIntersectingChunk(const BSONObj& shardKey, const BSONObj& collation) const {
    const bool hasSimpleCollation = (collation.isEmpty() && !_rt->optRt->getDefaultCollator()) ||
        SimpleBSONObjComparator::kInstance.evaluate(collation == CollationSpec::kSimpleSpec);
    if (!hasSimpleCollation) {
        for (BSONElement elt : shardKey) {
            uassert(ErrorCodes::ShardKeyNotFound,
                    str::stream() << "Cannot target single shard due to collation of key "
                                  << elt.fieldNameStringData() << " for namespace "
                                  << _rt->optRt->nss(),
                    !CollationIndexKey::isCollatableType(elt.type()));
        }
    }

    auto chunkInfo = _rt->optRt->findIntersectingChunk(shardKey);

    uassert(ErrorCodes::ShardKeyNotFound,
            str::stream() << "Cannot target single shard using key " << shardKey
                          << " for namespace " << _rt->optRt->nss(),
            chunkInfo && chunkInfo->containsKey(shardKey));

    return Chunk(*chunkInfo, _clusterTime);
}

bool ChunkManager::keyBelongsToShard(const BSONObj& shardKey, const ShardId& shardId) const {
    if (shardKey.isEmpty())
        return false;

    auto chunkInfo = _rt->optRt->findIntersectingChunk(shardKey);
    if (!chunkInfo)
        return false;

    invariant(chunkInfo->containsKey(shardKey));

    return chunkInfo->getShardIdAt(_clusterTime) == shardId;
}

void ChunkManager::getShardIdsForQuery(boost::intrusive_ptr<ExpressionContext> expCtx,
                                       const BSONObj& query,
                                       const BSONObj& collation,
                                       std::set<ShardId>* shardIds) const {
    auto qr = std::make_unique<QueryRequest>(_rt->optRt->nss());
    qr->setFilter(query);

    if (auto uuid = getUUID())
        expCtx->uuid = uuid;

    if (!collation.isEmpty()) {
        qr->setCollation(collation);
    } else if (_rt->optRt->getDefaultCollator()) {
        auto defaultCollator = _rt->optRt->getDefaultCollator();
        qr->setCollation(defaultCollator->getSpec().toBSON());
        expCtx->setCollator(defaultCollator->clone());
    }

    auto cq = uassertStatusOK(
        CanonicalQuery::canonicalize(expCtx->opCtx,
                                     std::move(qr),
                                     expCtx,
                                     ExtensionsCallbackNoop(),
                                     MatchExpressionParser::kAllowAllSpecialFeatures));

    // Fast path for targeting equalities on the shard key.
    auto shardKeyToFind = _rt->optRt->getShardKeyPattern().extractShardKeyFromQuery(*cq);
    if (!shardKeyToFind.isEmpty()) {
        try {
            auto chunk = findIntersectingChunk(shardKeyToFind, collation);
            shardIds->insert(chunk.getShardId());
            return;
        } catch (const DBException&) {
            // The query uses multiple shards
        }
    }

    // Transforms query into bounds for each field in the shard key
    // for example :
    //   Key { a: 1, b: 1 },
    //   Query { a : { $gte : 1, $lt : 2 },
    //            b : { $gte : 3, $lt : 4 } }
    //   => Bounds { a : [1, 2), b : [3, 4) }
    IndexBounds bounds = getIndexBoundsForQuery(_rt->optRt->getShardKeyPattern().toBSON(), *cq);

    // Transforms bounds for each shard key field into full shard key ranges
    // for example :
    //   Key { a : 1, b : 1 }
    //   Bounds { a : [1, 2), b : [3, 4) }
    //   => Ranges { a : 1, b : 3 } => { a : 2, b : 4 }
    BoundList ranges = _rt->optRt->getShardKeyPattern().flattenBounds(bounds);

    for (BoundList::const_iterator it = ranges.begin(); it != ranges.end(); ++it) {
        getShardIdsForRange(it->first /*min*/, it->second /*max*/, shardIds);

        // Once we know we need to visit all shards no need to keep looping.
        // However, this optimization does not apply when we are reading from a snapshot
        // because _shardVersions contains shards with chunks and is built based on the last
        // refresh. Therefore, it is possible for _shardVersions to have fewer entries if a shard
        // no longer owns chunks when it used to at _clusterTime.
        if (!_clusterTime && shardIds->size() == _rt->optRt->_shardVersions.size()) {
            break;
        }
    }

    // SERVER-4914 Some clients of getShardIdsForQuery() assume at least one shard will be returned.
    // For now, we satisfy that assumption by adding a shard with no matches rather than returning
    // an empty set of shards.
    if (shardIds->empty()) {
        _rt->optRt->forEachChunk([&](const std::shared_ptr<ChunkInfo>& chunkInfo) {
            shardIds->insert(chunkInfo->getShardIdAt(_clusterTime));
            return false;
        });
    }
}

void ChunkManager::getShardIdsForRange(const BSONObj& min,
                                       const BSONObj& max,
                                       std::set<ShardId>* shardIds) const {
    // If our range is [MinKey, MaxKey], we can simply return all shard ids right away. However,
    // this optimization does not apply when we are reading from a snapshot because _shardVersions
    // contains shards with chunks and is built based on the last refresh. Therefore, it is
    // possible for _shardVersions to have fewer entries if a shard no longer owns chunks when it
    // used to at _clusterTime.
    if (!_clusterTime && allElementsAreOfType(MinKey, min) && allElementsAreOfType(MaxKey, max)) {
        getAllShardIds(shardIds);
        return;
    }

    _rt->optRt->forEachOverlappingChunk(min, max, true, [&](auto& chunkInfo) {
        shardIds->insert(chunkInfo->getShardIdAt(_clusterTime));

        // No need to iterate through the rest of the ranges, because we already know we need to use
        // all shards. However, this optimization does not apply when we are reading from a snapshot
        // because _shardVersions contains shards with chunks and is built based on the last
        // refresh. Therefore, it is possible for _shardVersions to have fewer entries if a shard
        // no longer owns chunks when it used to at _clusterTime.
        if (!_clusterTime && shardIds->size() == _rt->optRt->_shardVersions.size()) {
            return false;
        }

        return true;
    });
}

bool ChunkManager::rangeOverlapsShard(const ChunkRange& range, const ShardId& shardId) const {
    bool overlapFound = false;

    _rt->optRt->forEachOverlappingChunk(
        range.getMin(), range.getMax(), false, [&](auto& chunkInfo) {
            if (chunkInfo->getShardIdAt(_clusterTime) == shardId) {
                overlapFound = true;
                return false;
            }

            return true;
        });

    return overlapFound;
}

boost::optional<Chunk> ChunkManager::getNextChunkOnShard(const BSONObj& shardKey,
                                                         const ShardId& shardId) const {
    boost::optional<Chunk> chunk;

    _rt->optRt->forEachChunk(
        [&](auto& chunkInfo) {
            if (chunkInfo->getShardIdAt(_clusterTime) == shardId) {
                chunk.emplace(*chunkInfo, _clusterTime);
                return false;
            }
            return true;
        },
        shardKey);

    return chunk;
}

ShardId ChunkManager::getMinKeyShardIdWithSimpleCollation() const {
    auto minKey = getShardKeyPattern().getKeyPattern().globalMin();
    return findIntersectingChunkWithSimpleCollation(minKey).getShardId();
}

void RoutingTableHistory::getAllShardIds(std::set<ShardId>* all) const {
    std::transform(_shardVersions.begin(),
                   _shardVersions.end(),
                   std::inserter(*all, all->begin()),
                   [](const ShardVersionMap::value_type& pair) { return pair.first; });
}

int RoutingTableHistory::getNShardsOwningChunks() const {
    return _shardVersions.size();
}

IndexBounds ChunkManager::getIndexBoundsForQuery(const BSONObj& key,
                                                 const CanonicalQuery& canonicalQuery) {
    // $text is not allowed in planning since we don't have text index on mongos.
    // TODO: Treat $text query as a no-op in planning on mongos. So with shard key {a: 1},
    //       the query { a: 2, $text: { ... } } will only target to {a: 2}.
    if (QueryPlannerCommon::hasNode(canonicalQuery.root(), MatchExpression::TEXT)) {
        IndexBounds bounds;
        IndexBoundsBuilder::allValuesBounds(key, &bounds);  // [minKey, maxKey]
        return bounds;
    }

    // Similarly, ignore GEO_NEAR queries in planning, since we do not have geo indexes on mongos.
    if (QueryPlannerCommon::hasNode(canonicalQuery.root(), MatchExpression::GEO_NEAR)) {
        IndexBounds bounds;
        IndexBoundsBuilder::allValuesBounds(key, &bounds);
        return bounds;
    }

    // Consider shard key as an index
    std::string accessMethod = IndexNames::findPluginName(key);
    dassert(accessMethod == IndexNames::BTREE || accessMethod == IndexNames::HASHED);
    const auto indexType = IndexNames::nameToType(accessMethod);

    // Use query framework to generate index bounds
    QueryPlannerParams plannerParams;
    // Must use "shard key" index
    plannerParams.options = QueryPlannerParams::NO_TABLE_SCAN;
    IndexEntry indexEntry(key,
                          indexType,
                          // The shard key index cannot be multikey.
                          false,
                          // Empty multikey paths, since the shard key index cannot be multikey.
                          MultikeyPaths{},
                          // Empty multikey path set, since the shard key index cannot be multikey.
                          {},
                          false /* sparse */,
                          false /* unique */,
                          IndexEntry::Identifier{"shardkey"},
                          nullptr /* filterExpr */,
                          BSONObj(),
                          nullptr, /* collator */
                          nullptr /* projExec */);
    plannerParams.indices.push_back(std::move(indexEntry));

    auto plannerResult = QueryPlanner::plan(canonicalQuery, plannerParams);
    if (plannerResult.getStatus().code() != ErrorCodes::NoQueryExecutionPlans) {
        auto solutions = uassertStatusOK(std::move(plannerResult));

        // Pick any solution that has non-trivial IndexBounds. bounds.size() == 0 represents a
        // trivial IndexBounds where none of the fields' values are bounded.
        for (auto&& soln : solutions) {
            IndexBounds bounds = collapseQuerySolution(soln->root.get());
            if (bounds.size() > 0) {
                return bounds;
            }
        }
    }

    // We cannot plan the query without collection scan, so target to all shards.
    IndexBounds bounds;
    IndexBoundsBuilder::allValuesBounds(key, &bounds);  // [minKey, maxKey]
    return bounds;
}

IndexBounds ChunkManager::collapseQuerySolution(const QuerySolutionNode* node) {
    if (node->children.empty()) {
        invariant(node->getType() == STAGE_IXSCAN);

        const IndexScanNode* ixNode = static_cast<const IndexScanNode*>(node);
        return ixNode->bounds;
    }

    if (node->children.size() == 1) {
        // e.g. FETCH -> IXSCAN
        return collapseQuerySolution(node->children.front());
    }

    // children.size() > 1, assert it's OR / SORT_MERGE.
    if (node->getType() != STAGE_OR && node->getType() != STAGE_SORT_MERGE) {
        // Unexpected node. We should never reach here.
        LOGV2_ERROR(23833,
                    "could not generate index bounds on query solution tree: {node}",
                    "node"_attr = redact(node->toString()));
        dassert(false);  // We'd like to know this error in testing.

        // Bail out with all shards in production, since this isn't a fatal error.
        return IndexBounds();
    }

    IndexBounds bounds;

    for (std::vector<QuerySolutionNode*>::const_iterator it = node->children.begin();
         it != node->children.end();
         it++) {
        // The first branch under OR
        if (it == node->children.begin()) {
            invariant(bounds.size() == 0);
            bounds = collapseQuerySolution(*it);
            if (bounds.size() == 0) {  // Got unexpected node in query solution tree
                return IndexBounds();
            }
            continue;
        }

        IndexBounds childBounds = collapseQuerySolution(*it);
        if (childBounds.size() == 0) {
            // Got unexpected node in query solution tree
            return IndexBounds();
        }

        invariant(childBounds.size() == bounds.size());

        for (size_t i = 0; i < bounds.size(); i++) {
            bounds.fields[i].intervals.insert(bounds.fields[i].intervals.end(),
                                              childBounds.fields[i].intervals.begin(),
                                              childBounds.fields[i].intervals.end());
        }
    }

    for (size_t i = 0; i < bounds.size(); i++) {
        IndexBoundsBuilder::unionize(&bounds.fields[i]);
    }

    return bounds;
}

ChunkManager ChunkManager::makeAtTime(const ChunkManager& cm, Timestamp clusterTime) {
    return ChunkManager(cm.dbPrimary(), cm.dbVersion(), cm._rt, clusterTime);
}

std::string ChunkManager::toString() const {
    return _rt->optRt ? _rt->optRt->toString() : "UNSHARDED";
}

bool RoutingTableHistory::compatibleWith(const RoutingTableHistory& other,
                                         const ShardId& shardName) const {
    // Return true if the shard version is the same in the two chunk managers
    // TODO: This doesn't need to be so strong, just major vs
    return other.getVersion(shardName) == getVersion(shardName);
}

ChunkVersion RoutingTableHistory::_getVersion(const ShardId& shardName,
                                              bool throwOnStaleShard) const {
    auto it = _shardVersions.find(shardName);
    if (it == _shardVersions.end()) {
        // Shards without explicitly tracked shard versions (meaning they have no chunks) always
        // have a version of (0, 0, epoch)
        return ChunkVersion(0, 0, _chunkMap.getVersion().epoch());
    }

    if (throwOnStaleShard && gEnableFinerGrainedCatalogCacheRefresh) {
        uassert(ShardInvalidatedForTargetingInfo(_nss),
                "shard has been marked stale",
                !it->second.isStale.load());
    }

    return it->second.shardVersion;
}

ChunkVersion RoutingTableHistory::getVersion(const ShardId& shardName) const {
    return _getVersion(shardName, true);
}

ChunkVersion RoutingTableHistory::getVersionForLogging(const ShardId& shardName) const {
    return _getVersion(shardName, false);
}

std::string RoutingTableHistory::toString() const {
    StringBuilder sb;
    sb << "RoutingTableHistory: " << _nss.ns() << " key: " << _shardKeyPattern.toString() << '\n';

    sb << "Chunks:\n";
    _chunkMap.forEach([&sb](const auto& chunk) {
        sb << "\t" << chunk->toString() << '\n';
        return true;
    });

    sb << "Shard versions:\n";
    for (const auto& entry : _shardVersions) {
        sb << "\t" << entry.first << ": " << entry.second.shardVersion.toString() << '\n';
    }

    return sb.str();
}

RoutingTableHistory RoutingTableHistory::makeNew(
    NamespaceString nss,
    boost::optional<UUID> uuid,
    KeyPattern shardKeyPattern,
    std::unique_ptr<CollatorInterface> defaultCollator,
    bool unique,
    OID epoch,
    boost::optional<TypeCollectionReshardingFields> reshardingFields,
    const std::vector<ChunkType>& chunks) {
    return RoutingTableHistory(std::move(nss),
                               std::move(uuid),
                               std::move(shardKeyPattern),
                               std::move(defaultCollator),
                               std::move(unique),
                               boost::none,
                               ChunkMap{epoch})
        .makeUpdated(std::move(reshardingFields), chunks);
}

RoutingTableHistory RoutingTableHistory::makeUpdated(
    boost::optional<TypeCollectionReshardingFields> reshardingFields,
    const std::vector<ChunkType>& changedChunks) const {
    auto changedChunkInfos = flatten(changedChunks);
    auto chunkMap = _chunkMap.createMerged(changedChunkInfos);

    // Only update the same collection.
    invariant(getVersion().epoch() == chunkMap.getVersion().epoch());

    return RoutingTableHistory(_nss,
                               _uuid,
                               getShardKeyPattern().getKeyPattern(),
                               CollatorInterface::cloneCollator(getDefaultCollator()),
                               isUnique(),
                               std::move(reshardingFields),
                               std::move(chunkMap));
}

AtomicWord<uint64_t> ComparableChunkVersion::_epochDisambiguatingSequenceNumSource{1ULL};
AtomicWord<uint64_t> ComparableChunkVersion::_forcedRefreshSequenceNumSource{1ULL};

ComparableChunkVersion ComparableChunkVersion::makeComparableChunkVersion(
    const ChunkVersion& version) {
    return ComparableChunkVersion(_forcedRefreshSequenceNumSource.load(),
                                  version,
                                  _epochDisambiguatingSequenceNumSource.fetchAndAdd(1));
}

ComparableChunkVersion ComparableChunkVersion::makeComparableChunkVersionForForcedRefresh() {
    return ComparableChunkVersion(_forcedRefreshSequenceNumSource.addAndFetch(2) - 1,
                                  boost::none,
                                  _epochDisambiguatingSequenceNumSource.fetchAndAdd(1));
}

std::string ComparableChunkVersion::toString() const {
    return str::stream() << _forcedRefreshSequenceNum << "|"
                         << (_chunkVersion ? _chunkVersion->toString() : "NONE") << "|"
                         << _epochDisambiguatingSequenceNum;
}

bool ComparableChunkVersion::operator==(const ComparableChunkVersion& other) const {
    if (_forcedRefreshSequenceNum == other._forcedRefreshSequenceNum) {
        if (_forcedRefreshSequenceNum == 0)
            return true;  // Default constructed value

        if (sameEpoch(other)) {
            if (_chunkVersion->majorVersion() == 0 && other._chunkVersion->majorVersion() == 0) {
                return _chunkVersion->epoch() == OID();
            }
            return _chunkVersion->majorVersion() == other._chunkVersion->majorVersion() &&
                _chunkVersion->minorVersion() == other._chunkVersion->minorVersion();
        }
    }
    return false;
}

bool ComparableChunkVersion::operator<(const ComparableChunkVersion& other) const {
    if (_forcedRefreshSequenceNum < other._forcedRefreshSequenceNum)
        return true;
    if (_forcedRefreshSequenceNum > other._forcedRefreshSequenceNum)
        return false;
    if (_forcedRefreshSequenceNum == 0)
        return false;  // Default constructed value

    if (sameEpoch(other) && other._chunkVersion->epoch() != OID() &&
        _chunkVersion->majorVersion() != 0 && other._chunkVersion->majorVersion() != 0) {
        return _chunkVersion->majorVersion() < other._chunkVersion->majorVersion() ||
            (_chunkVersion->majorVersion() == other._chunkVersion->majorVersion() &&
             _chunkVersion->minorVersion() < other._chunkVersion->minorVersion());
    } else {
        return _epochDisambiguatingSequenceNum < other._epochDisambiguatingSequenceNum;
    }
}

}  // namespace mongo