summaryrefslogtreecommitdiff
path: root/src/mongo/s/shard_key_pattern.cpp
blob: f48088e98374f5ee86e35eead1df40d8013aebc0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
/**
 *    Copyright (C) 2013 10gen Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects
 *    for all of the code used other than as permitted herein. If you modify
 *    file(s) with this exception, you may extend this exception to your
 *    version of the file(s), but you are not obligated to do so. If you do not
 *    wish to do so, delete this exception statement from your version. If you
 *    delete this exception statement from all source files in the program,
 *    then also delete it in the license file.
 */

#include "mongo/s/shard_key_pattern.h"

#include <vector>

#include "mongo/db/field_ref.h"
#include "mongo/db/field_ref_set.h"
#include "mongo/db/hasher.h"
#include "mongo/db/index_names.h"
#include "mongo/db/ops/path_support.h"
#include "mongo/db/query/canonical_query.h"
#include "mongo/util/mongoutils/str.h"

namespace mongo {

    using std::make_pair;
    using std::pair;
    using std::shared_ptr;
    using std::string;
    using std::unique_ptr;
    using std::vector;

    using pathsupport::EqualityMatches;
    using mongoutils::str::stream;

    const int ShardKeyPattern::kMaxShardKeySizeBytes = 512;
    const unsigned int ShardKeyPattern::kMaxFlattenedInCombinations = 4000000;

    Status ShardKeyPattern::checkShardKeySize(const BSONObj& shardKey) {
        if (shardKey.objsize() <= kMaxShardKeySizeBytes)
            return Status::OK();

        return Status(ErrorCodes::ShardKeyTooBig,
                      stream() << "shard keys must be less than " << kMaxShardKeySizeBytes
                               << " bytes, but key " << shardKey << " is " << shardKey.objsize()
                               << " bytes");
    }

    static bool isHashedPatternEl(const BSONElement& el) {
        return el.type() == String && el.String() == IndexNames::HASHED;
    }

    /**
     * Currently the allowable shard keys are either
     * i) a hashed single field, e.g. { a : "hashed" }, or
     * ii) a compound list of ascending, potentially-nested field paths, e.g. { a : 1 , b.c : 1 }
     */
    static vector<FieldRef*> parseShardKeyPattern(const BSONObj& keyPattern) {

        OwnedPointerVector<FieldRef> parsedPaths;
        static const vector<FieldRef*> empty;

        BSONObjIterator patternIt(keyPattern);
        while (patternIt.more()) {

            BSONElement patternEl = patternIt.next();
            parsedPaths.push_back(new FieldRef(patternEl.fieldNameStringData()));
            const FieldRef& patternPath = *parsedPaths.back();

            // Empty path
            if (patternPath.numParts() == 0)
                return empty;

            // Extra "." in path?
            if (patternPath.dottedField() != patternEl.fieldNameStringData())
                return empty;

            // Empty parts of the path, ".."?
            for (size_t i = 0; i < patternPath.numParts(); ++i) {
                if (patternPath.getPart(i).size() == 0)
                    return empty;
            }

            // Numeric and ascending (1.0), or "hashed" and single field
            if (!patternEl.isNumber()) {
                if (keyPattern.nFields() != 1 || !isHashedPatternEl(patternEl))
                    return empty;
            }
            else if (patternEl.numberInt() != 1) {
                return empty;
            }
        }

        return parsedPaths.release();
    }

    ShardKeyPattern::ShardKeyPattern(const BSONObj& keyPattern)
        : _keyPatternPaths(parseShardKeyPattern(keyPattern)),
          _keyPattern(_keyPatternPaths.empty() ? BSONObj() : keyPattern) {
    }

    ShardKeyPattern::ShardKeyPattern(const KeyPattern& keyPattern)
        : _keyPatternPaths(parseShardKeyPattern(keyPattern.toBSON())),
          _keyPattern(_keyPatternPaths.empty() ? KeyPattern(BSONObj()) : keyPattern) {
    }

    bool ShardKeyPattern::isValid() const {
        return !_keyPattern.toBSON().isEmpty();
    }

    bool ShardKeyPattern::isHashedPattern() const {
        return isHashedPatternEl(_keyPattern.toBSON().firstElement());
    }

    const KeyPattern& ShardKeyPattern::getKeyPattern() const {
        return _keyPattern;
    }

    const BSONObj& ShardKeyPattern::toBSON() const {
        return _keyPattern.toBSON();
    }

    string ShardKeyPattern::toString() const {
        return toBSON().toString();
    }

    static bool isShardKeyElement(const BSONElement& element, bool allowRegex) {
        // TODO: Disallow regex all the time
        if (element.eoo() || element.type() == Array || (!allowRegex && element.type() == RegEx)
            || (element.type() == Object && !element.embeddedObject().okForStorage()))
            return false;
        return true;
    }

    bool ShardKeyPattern::isShardKey(const BSONObj& shardKey) const {

        // Shard keys are always of the form: { 'nested.path' : value, 'nested.path2' : value }

        if (!isValid())
            return false;

        BSONObjIterator patternIt(_keyPattern.toBSON());
        while (patternIt.more()) {

            BSONElement patternEl = patternIt.next();

            BSONElement keyEl = shardKey[patternEl.fieldNameStringData()];
            if (!isShardKeyElement(keyEl, true))
                return false;
        }

        return true;
    }

    BSONObj ShardKeyPattern::normalizeShardKey(const BSONObj& shardKey) const {

        // Shard keys are always of the form: { 'nested.path' : value, 'nested.path2' : value }
        // and in the same order as the key pattern

        if (!isValid())
            return BSONObj();

        // We want to return an empty key if users pass us something that's not a shard key
        if (shardKey.nFields() > _keyPattern.toBSON().nFields())
            return BSONObj();

        BSONObjBuilder keyBuilder;
        BSONObjIterator patternIt(_keyPattern.toBSON());
        while (patternIt.more()) {

            BSONElement patternEl = patternIt.next();

            BSONElement keyEl = shardKey[patternEl.fieldNameStringData()];

            if (!isShardKeyElement(keyEl, true))
                return BSONObj();

            keyBuilder.appendAs(keyEl, patternEl.fieldName());
        }

        dassert(isShardKey(keyBuilder.asTempObj()));
        return keyBuilder.obj();
    }

    static BSONElement extractKeyElementFromMatchable(const MatchableDocument& matchable,
                                                      StringData pathStr) {
        ElementPath path;
        path.init(pathStr);
        path.setTraverseNonleafArrays(false);
        path.setTraverseLeafArray(false);

        MatchableDocument::IteratorHolder matchIt(&matchable, &path);
        if (!matchIt->more())
            return BSONElement();

        BSONElement matchEl = matchIt->next().element();
        // We shouldn't have more than one element - we don't expand arrays
        dassert(!matchIt->more());

        return matchEl;
    }

    BSONObj //
    ShardKeyPattern::extractShardKeyFromMatchable(const MatchableDocument& matchable) const {

        if (!isValid())
            return BSONObj();

        BSONObjBuilder keyBuilder;

        BSONObjIterator patternIt(_keyPattern.toBSON());
        while (patternIt.more()) {

            BSONElement patternEl = patternIt.next();
            BSONElement matchEl = extractKeyElementFromMatchable(matchable,
                                                                 patternEl.fieldNameStringData());

            if (!isShardKeyElement(matchEl, true))
                return BSONObj();

            if (isHashedPatternEl(patternEl)) {
                keyBuilder.append(patternEl.fieldName(),
                                  BSONElementHasher::hash64(matchEl,
                                                            BSONElementHasher::DEFAULT_HASH_SEED));
            }
            else {
                // NOTE: The matched element may *not* have the same field name as the path -
                // index keys don't contain field names, for example
                keyBuilder.appendAs(matchEl, patternEl.fieldName());
            }
        }

        dassert(isShardKey(keyBuilder.asTempObj()));
        return keyBuilder.obj();
    }

    BSONObj ShardKeyPattern::extractShardKeyFromDoc(const BSONObj& doc) const {
        BSONMatchableDocument matchable(doc);
        return extractShardKeyFromMatchable(matchable);
    }

    static BSONElement findEqualityElement(const EqualityMatches& equalities,
                                           const FieldRef& path) {

        int parentPathPart;
        const BSONElement& parentEl = pathsupport::findParentEqualityElement(equalities,
                                                                             path,
                                                                             &parentPathPart);

        if (parentPathPart == static_cast<int>(path.numParts()))
            return parentEl;

        if (parentEl.type() != Object)
            return BSONElement();

        StringData suffixStr = path.dottedSubstring(parentPathPart, path.numParts());
        BSONMatchableDocument matchable(parentEl.Obj());
        return extractKeyElementFromMatchable(matchable, suffixStr);
    }

    StatusWith<BSONObj> ShardKeyPattern::extractShardKeyFromQuery(const BSONObj& basicQuery) const {

        if (!isValid())
            return StatusWith<BSONObj>(BSONObj());

        // Extract equalities from query
        CanonicalQuery* rawQuery;
        Status queryStatus =
            CanonicalQuery::canonicalize("", basicQuery, &rawQuery, WhereCallbackNoop());
        if (!queryStatus.isOK())
            return StatusWith<BSONObj>(queryStatus);
        unique_ptr<CanonicalQuery> query(rawQuery);

        EqualityMatches equalities;
        // TODO: Build the path set initially?
        FieldRefSet keyPatternPathSet(_keyPatternPaths.vector());
        // We only care about extracting the full key pattern paths - if they don't exist (or are
        // conflicting), we don't contain the shard key.
        Status eqStatus = pathsupport::extractFullEqualityMatches(*query->root(),
                                                                  keyPatternPathSet,
                                                                  &equalities);
        // NOTE: Failure to extract equality matches just means we return no shard key - it's not
        // an error we propagate
        if (!eqStatus.isOK())
            return StatusWith<BSONObj>(BSONObj());

        // Extract key from equalities
        // NOTE: The method below is equivalent to constructing a BSONObj and running
        // extractShardKeyFromMatchable, but doesn't require creating the doc.

        BSONObjBuilder keyBuilder;
        // Iterate the parsed paths to avoid re-parsing
        for (OwnedPointerVector<FieldRef>::const_iterator it = _keyPatternPaths.begin();
            it != _keyPatternPaths.end(); ++it) {

            const FieldRef& patternPath = **it;
            BSONElement equalEl = findEqualityElement(equalities, patternPath);

            if (!isShardKeyElement(equalEl, false))
                return StatusWith<BSONObj>(BSONObj());

            if (isHashedPattern()) {
                keyBuilder.append(patternPath.dottedField(),
                                  BSONElementHasher::hash64(equalEl,
                                                            BSONElementHasher::DEFAULT_HASH_SEED));
            }
            else {
                // NOTE: The equal element may *not* have the same field name as the path -
                // nested $and, $eq, for example
                keyBuilder.appendAs(equalEl, patternPath.dottedField());
            }
        }

        dassert(isShardKey(keyBuilder.asTempObj()));
        return StatusWith<BSONObj>(keyBuilder.obj());
    }

    bool ShardKeyPattern::isUniqueIndexCompatible(const BSONObj& uniqueIndexPattern) const {

        dassert(!KeyPattern::isHashedKeyPattern(uniqueIndexPattern));

        if (!uniqueIndexPattern.isEmpty()
            && string("_id") == uniqueIndexPattern.firstElementFieldName()) {
            return true;
        }

        return _keyPattern.toBSON().isFieldNamePrefixOf(uniqueIndexPattern);
    }

    BoundList ShardKeyPattern::flattenBounds(const IndexBounds& indexBounds) const {

        invariant(indexBounds.fields.size() == (size_t)_keyPattern.toBSON().nFields());

        // If any field is unsatisfied, return empty bound list.
        for (vector<OrderedIntervalList>::const_iterator it = indexBounds.fields.begin();
            it != indexBounds.fields.end(); it++) {
            if (it->intervals.size() == 0) {
                return BoundList();
            }
        }
        // To construct our bounds we will generate intervals based on bounds for
        // the first field, then compound intervals based on constraints for the first
        // 2 fields, then compound intervals for the first 3 fields, etc.
        // As we loop through the fields, we start generating new intervals that will later
        // get extended in another iteration of the loop.  We define these partially constructed
        // intervals using pairs of BSONObjBuilders (shared_ptrs, since after one iteration of the
        // loop they still must exist outside their scope).
        typedef vector<pair<shared_ptr<BSONObjBuilder>, shared_ptr<BSONObjBuilder> > > BoundBuilders;

        BoundBuilders builders;
        builders.push_back(make_pair(shared_ptr<BSONObjBuilder>(new BSONObjBuilder()),
                                     shared_ptr<BSONObjBuilder>(new BSONObjBuilder())));
        BSONObjIterator keyIter(_keyPattern.toBSON());
        // until equalityOnly is false, we are just dealing with equality (no range or $in queries).
        bool equalityOnly = true;

        for (size_t i = 0; i < indexBounds.fields.size(); i++) {
            BSONElement e = keyIter.next();

            StringData fieldName = e.fieldNameStringData();

            // get the relevant intervals for this field, but we may have to transform the
            // list of what's relevant according to the expression for this field
            const OrderedIntervalList& oil = indexBounds.fields[i];
            const vector<Interval>& intervals = oil.intervals;

            if (equalityOnly) {
                if (intervals.size() == 1 && intervals.front().isPoint()) {
                    // this field is only a single point-interval
                    BoundBuilders::const_iterator j;
                    for (j = builders.begin(); j != builders.end(); ++j) {
                        j->first->appendAs(intervals.front().start, fieldName);
                        j->second->appendAs(intervals.front().end, fieldName);
                    }
                }
                else {
                    // This clause is the first to generate more than a single point.
                    // We only execute this clause once. After that, we simplify the bound
                    // extensions to prevent combinatorial explosion.
                    equalityOnly = false;

                    BoundBuilders newBuilders;

                    for (BoundBuilders::const_iterator it = builders.begin(); it != builders.end();
                        ++it) {
                        BSONObj first = it->first->obj();
                        BSONObj second = it->second->obj();

                        for (vector<Interval>::const_iterator interval = intervals.begin();
                            interval != intervals.end(); ++interval) {
                            uassert( 17439,
                                "combinatorial limit of $in partitioning of results exceeded" ,
                                newBuilders.size() < kMaxFlattenedInCombinations );
                            newBuilders.push_back( //
                            make_pair(shared_ptr<BSONObjBuilder>(new BSONObjBuilder()),
                                      shared_ptr<BSONObjBuilder>(new BSONObjBuilder())));
                            newBuilders.back().first->appendElements(first);
                            newBuilders.back().second->appendElements(second);
                            newBuilders.back().first->appendAs(interval->start, fieldName);
                            newBuilders.back().second->appendAs(interval->end, fieldName);
                        }
                    }
                    builders = newBuilders;
                }
            }
            else {
                // if we've already generated a range or multiple point-intervals
                // just extend what we've generated with min/max bounds for this field
                BoundBuilders::const_iterator j;
                for (j = builders.begin(); j != builders.end(); ++j) {
                    j->first->appendAs(intervals.front().start, fieldName);
                    j->second->appendAs(intervals.back().end, fieldName);
                }
            }
        }
        BoundList ret;
        for (BoundBuilders::const_iterator i = builders.begin(); i != builders.end(); ++i)
            ret.push_back(make_pair(i->first->obj(), i->second->obj()));
        return ret;
    }

}