summaryrefslogtreecommitdiff
path: root/src/mongo/transport/service_state_machine.cpp
blob: 0cb587426e92eeb43c65ea25173b261bf6189a8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kNetwork

#include "mongo/platform/basic.h"

#include "mongo/transport/service_state_machine.h"

#include <memory>

#include "mongo/base/status.h"
#include "mongo/config.h"
#include "mongo/db/client.h"
#include "mongo/db/dbmessage.h"
#include "mongo/db/stats/counters.h"
#include "mongo/db/traffic_recorder.h"
#include "mongo/logv2/log.h"
#include "mongo/platform/atomic_word.h"
#include "mongo/platform/mutex.h"
#include "mongo/rpc/message.h"
#include "mongo/rpc/op_msg.h"
#include "mongo/stdx/thread.h"
#include "mongo/transport/message_compressor_base.h"
#include "mongo/transport/message_compressor_manager.h"
#include "mongo/transport/service_entry_point.h"
#include "mongo/transport/service_executor_fixed.h"
#include "mongo/transport/service_executor_synchronous.h"
#include "mongo/transport/session.h"
#include "mongo/transport/transport_layer.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/concurrency/idle_thread_block.h"
#include "mongo/util/concurrency/thread_name.h"
#include "mongo/util/debug_util.h"
#include "mongo/util/exit.h"
#include "mongo/util/fail_point.h"
#include "mongo/util/future.h"
#include "mongo/util/net/socket_exception.h"
#include "mongo/util/net/ssl_manager.h"
#include "mongo/util/net/ssl_peer_info.h"
#include "mongo/util/quick_exit.h"

namespace mongo {
namespace transport {
namespace {
MONGO_FAIL_POINT_DEFINE(doNotSetMoreToCome);
/**
 * Creates and returns a legacy exhaust message, if exhaust is allowed. The returned message is to
 * be used as the subsequent 'synthetic' exhaust request. Returns an empty message if exhaust is not
 * allowed. Any messages that do not have an opcode of OP_MSG are considered legacy.
 */
Message makeLegacyExhaustMessage(Message* m, const DbResponse& dbresponse) {
    // OP_QUERY responses are always of type OP_REPLY.
    invariant(dbresponse.response.operation() == opReply);

    if (!dbresponse.shouldRunAgainForExhaust) {
        return Message();
    }

    // Legacy find operations via the OP_QUERY/OP_GET_MORE network protocol never provide the next
    // invocation for exhaust.
    invariant(!dbresponse.nextInvocation);

    DbMessage dbmsg(*m);
    invariant(dbmsg.messageShouldHaveNs());
    const char* ns = dbmsg.getns();

    MsgData::View header = dbresponse.response.header();
    QueryResult::View qr = header.view2ptr();
    long long cursorid = qr.getCursorId();

    if (cursorid == 0) {
        return Message();
    }

    // Generate a message that will act as the subsequent 'synthetic' exhaust request.
    BufBuilder b(512);
    b.appendNum(static_cast<int>(0));          // size set later in setLen()
    b.appendNum(header.getId());               // message id
    b.appendNum(header.getResponseToMsgId());  // in response to
    b.appendNum(static_cast<int>(dbGetMore));  // opCode is OP_GET_MORE
    b.appendNum(static_cast<int>(0));          // Must be ZERO (reserved)
    b.appendStr(StringData(ns));               // Namespace
    b.appendNum(static_cast<int>(0));          // ntoreturn
    b.appendNum(cursorid);                     // cursor id from the OP_REPLY

    MsgData::View(b.buf()).setLen(b.len());

    return Message(b.release());
}

/**
 * Given a request and its already generated response, checks for exhaust flags. If exhaust is
 * allowed, produces the subsequent request message, and modifies the response message to indicate
 * it is part of an exhaust stream. Returns the subsequent request message, which is known as a
 * 'synthetic' exhaust request. Returns an empty message if exhaust is not allowed.
 */
Message makeExhaustMessage(Message requestMsg, DbResponse* dbresponse) {
    if (requestMsg.operation() == dbQuery) {
        return makeLegacyExhaustMessage(&requestMsg, *dbresponse);
    }

    if (!OpMsgRequest::isFlagSet(requestMsg, OpMsg::kExhaustSupported)) {
        return Message();
    }

    if (!dbresponse->shouldRunAgainForExhaust) {
        return Message();
    }

    const bool checksumPresent = OpMsg::isFlagSet(requestMsg, OpMsg::kChecksumPresent);
    Message exhaustMessage;

    if (auto nextInvocation = dbresponse->nextInvocation) {
        // The command provided a new BSONObj for the next invocation.
        OpMsgBuilder builder;
        builder.setBody(*nextInvocation);
        exhaustMessage = builder.finish();
    } else {
        // Reuse the previous invocation for the next invocation.
        OpMsg::removeChecksum(&requestMsg);
        exhaustMessage = requestMsg;
    }

    // The id of the response is used as the request id of this 'synthetic' request. Re-checksum
    // if needed.
    exhaustMessage.header().setId(dbresponse->response.header().getId());
    exhaustMessage.header().setResponseToMsgId(dbresponse->response.header().getResponseToMsgId());
    OpMsg::setFlag(&exhaustMessage, OpMsg::kExhaustSupported);
    if (checksumPresent) {
        OpMsg::appendChecksum(&exhaustMessage);
    }

    OpMsg::removeChecksum(&dbresponse->response);
    // Indicate that the response is part of an exhaust stream (unless the 'doNotSetMoreToCome'
    // failpoint is set). Re-checksum if needed.
    if (!MONGO_unlikely(doNotSetMoreToCome.shouldFail())) {
        OpMsg::setFlag(&dbresponse->response, OpMsg::kMoreToCome);
    }
    if (checksumPresent) {
        OpMsg::appendChecksum(&dbresponse->response);
    }

    return exhaustMessage;
}
}  // namespace

class ServiceStateMachine::Impl final
    : public std::enable_shared_from_this<ServiceStateMachine::Impl> {
public:
    /*
     * Any state may transition to EndSession in case of an error, otherwise the valid state
     * transitions are:
     * Source -> SourceWait -> Process -> SinkWait -> Source (standard RPC)
     * Source -> SourceWait -> Process -> SinkWait -> Process -> SinkWait ... (exhaust)
     * Source -> SourceWait -> Process -> Source (fire-and-forget)
     */
    enum class State {
        Created,     // The session has been created, but no operations have been performed yet
        Source,      // Request a new Message from the network to handle
        SourceWait,  // Wait for the new Message to arrive from the network
        Process,     // Run the Message through the database
        SinkWait,    // Wait for the database result to be sent by the network
        EndSession,  // End the session - the ServiceStateMachine will be invalid after this
        Ended        // The session has ended. It is illegal to call any method besides
                     // state() if this is the current state.
    };

    /*
     * When start() is called with Ownership::kOwned, the SSM will swap the Client/thread name
     * whenever it runs a stage of the state machine, and then unswap them out when leaving the SSM.
     *
     * With Ownership::kStatic, it will assume that the SSM will only ever be run from one thread,
     * and that thread will not be used for other SSM's. It will swap in the Client/thread name for
     * the first run and leave them in place.
     *
     * kUnowned is used internally to mark that the SSM is inactive.
     */
    enum class Ownership { kUnowned, kOwned, kStatic };

    /*
     * A class that wraps up lifetime management of the _client and _threadName for each step in
     * runOnce();
     */
    class ThreadGuard;
    class ThreadGuardedExecutor;

    Impl(ServiceContext::UniqueClient client)
        : _state{State::Created},
          _serviceContext{client->getServiceContext()},
          _sep{_serviceContext->getServiceEntryPoint()},
          _client{std::move(client)},
          _clientPtr{_client.get()} {}

    void start(ServiceExecutorContext seCtx);

    void setCleanupHook(std::function<void()> hook);

    /*
     * Terminates the associated transport Session, regardless of tags.
     *
     * This will not block on the session terminating cleaning itself up, it returns immediately.
     */
    void terminate();

    /*
     * Terminates the associated transport Session if its tags don't match the supplied tags.  If
     * the session is in a pending state, before any tags have been set, it will not be terminated.
     *
     * This will not block on the session terminating cleaning itself up, it returns immediately.
     */
    void terminateIfTagsDontMatch(transport::Session::TagMask tags);

    /*
     * Terminates the associated transport Session if status indicate error.
     *
     * This will not block on the session terminating cleaning itself up, it returns immediately.
     */
    void terminateAndLogIfError(Status status);

    /*
     * This function actually calls into the database and processes a request. It's broken out
     * into its own inline function for better readability.
     */
    Future<void> processMessage();

    /*
     * These get called by the TransportLayer when requested network I/O has completed.
     */
    void sourceCallback(Status status);
    void sinkCallback(Status status);

    /*
     * Source/Sink message from the TransportLayer. These will invalidate the ThreadGuard just
     * before waiting on the TL.
     */
    Future<void> sourceMessage();
    Future<void> sinkMessage();

    /*
     * Releases all the resources associated with the session and call the cleanupHook.
     */
    void cleanupSession();

    /*
     * This is the initial function called at the beginning of a thread's lifecycle in the
     * TransportLayer.
     */
    void runOnce();

    /*
     * Releases all the resources associated with the exhaust request.
     */
    void cleanupExhaustResources() noexcept;

    /*
     * Gets the current state of connection for testing/diagnostic purposes.
     */
    State state() const {
        return _state.load();
    }

    /*
     * Gets the transport::Session associated with this connection
     */
    const transport::SessionHandle& session() {
        return _clientPtr->session();
    }

    /*
     * Gets the transport::ServiceExecutor associated with this connection.
     */
    ServiceExecutor* executor() {
        return ServiceExecutorContext::get(_clientPtr)->getServiceExecutor();
    }

private:
    AtomicWord<State> _state{State::Created};

    ServiceContext* const _serviceContext;
    ServiceEntryPoint* const _sep;

    transport::SessionHandle _sessionHandle;
    ServiceContext::UniqueClient _client;
    Client* _clientPtr;
    std::function<void()> _cleanupHook;

    bool _inExhaust = false;
    boost::optional<MessageCompressorId> _compressorId;
    Message _inMessage;
    Message _outMessage;

    // Owns the instance of OperationContext that is used to process ingress requests (i.e.,
    // `handleRequest`). It also allows delegating destruction of opCtx to another function to
    // potentially remove its cost from the critical path. This is currently only used in
    // `processMessage()`.
    ServiceContext::UniqueOperationContext _opCtx;
};

/*
 * This class wraps up the logic for swapping/unswapping the Client when transitioning between
 * states.
 *
 * In debug builds this also ensures that only one thread is working on the SSM at once.
 */
class ServiceStateMachine::Impl::ThreadGuard {
    ThreadGuard(ThreadGuard&) = delete;
    ThreadGuard& operator=(ThreadGuard&) = delete;

public:
    explicit ThreadGuard(ServiceStateMachine::Impl* ssm) : _ssm{ssm} {
        invariant(_ssm);

        if (_ssm->_clientPtr == Client::getCurrent()) {
            // We're not the first on this thread, nothing more to do.
            return;
        }

        auto& client = _ssm->_client;
        invariant(client);

        // Set up the thread name
        auto oldThreadName = getThreadName();
        const auto& threadName = client->desc();
        if (oldThreadName != threadName) {
            _oldThreadName = oldThreadName.toString();
            setThreadName(threadName);
        }

        // Swap the current Client so calls to cc() work as expected
        Client::setCurrent(std::move(client));
        _haveTakenOwnership = true;
    }

    // Constructing from a moved ThreadGuard invalidates the other thread guard.
    ThreadGuard(ThreadGuard&& other)
        : _ssm{std::exchange(other._ssm, nullptr)},
          _haveTakenOwnership{std::exchange(_haveTakenOwnership, false)} {}

    ThreadGuard& operator=(ThreadGuard&& other) {
        _ssm = std::exchange(other._ssm, nullptr);
        _haveTakenOwnership = std::exchange(other._haveTakenOwnership, false);
        return *this;
    };

    ThreadGuard() = delete;

    ~ThreadGuard() {
        release();
    }

    explicit operator bool() const {
        return _ssm;
    }

    void release() {
        if (!_ssm) {
            // We've been released or moved from.
            return;
        }

        // If we have a ServiceStateMachine pointer, then it should control the current Client.
        invariant(_ssm->_clientPtr == Client::getCurrent());

        if (auto haveTakenOwnership = std::exchange(_haveTakenOwnership, false);
            !haveTakenOwnership) {
            // Reset our pointer so that we cannot release again.
            _ssm = nullptr;

            // We are not the original owner, nothing more to do.
            return;
        }

        // Reclaim the client.
        _ssm->_client = Client::releaseCurrent();

        // Reset our pointer so that we cannot release again.
        _ssm = nullptr;

        if (!_oldThreadName.empty()) {
            // Reset the old thread name.
            setThreadName(_oldThreadName);
        }
    }

private:
    ServiceStateMachine::Impl* _ssm = nullptr;

    bool _haveTakenOwnership = false;
    std::string _oldThreadName;
};

auto getThreadGuardedExecutor =
    Client::declareDecoration<std::shared_ptr<ServiceStateMachine::Impl::ThreadGuardedExecutor>>();

/*
 * A ThreadGuardedExecutor is a client decoration that can wrap any OutOfLineExecutor to allow
 * processing tasks while having the client object (i.e., `Client`) attached to the executor thread.
 * In particular, scheduling tasks through a ThreadGuardedExecutor ensures that the corresponding
 * client object is reachable through `Client::getCurrent()` and prevents concurrent accesses to the
 * client object. A ThreadGuardedExecutor is only valid in the context of ServiceStateMachine.
 * Also, any task scheduled through ThreadGuardedExecutor captures a reference (i.e., shared
 * pointer) to both ServiceStateMachine and ThreadGuardedExecutor, thus accessing these objects
 * through raw pointers (e.g., `this`) is considered safe.
 */
class ServiceStateMachine::Impl::ThreadGuardedExecutor
    : public std::enable_shared_from_this<ServiceStateMachine::Impl::ThreadGuardedExecutor> {
public:
    // Wraps an instance of OutOfLineExecutor and delegates scheduling to ThreadGuardedExecutor
    class WrappedExecutor : public OutOfLineExecutor,
                            public std::enable_shared_from_this<WrappedExecutor> {
    public:
        WrappedExecutor(const WrappedExecutor&) = delete;
        WrappedExecutor(WrappedExecutor&&) = delete;

        WrappedExecutor(std::shared_ptr<ThreadGuardedExecutor> parent, OutOfLineExecutor* executor)
            : _parent(std::move(parent)), _executor(executor) {}

        void schedule(OutOfLineExecutor::Task task) override {
            _parent->schedule(_executor, std::move(task));
        }

    private:
        std::shared_ptr<ThreadGuardedExecutor> const _parent;
        OutOfLineExecutor* const _executor;
    };

    ThreadGuardedExecutor() = delete;
    ThreadGuardedExecutor(const ThreadGuardedExecutor&) = delete;

    explicit ThreadGuardedExecutor(std::weak_ptr<ServiceStateMachine::Impl> ssm)
        : _ssm(std::move(ssm)) {}

    ThreadGuardedExecutor(ThreadGuardedExecutor&& other)
        : _isBusy{other._isBusy.load()}, _ssm(other._ssm), _guard(std::move(other._guard)) {}

    ~ThreadGuardedExecutor() {
        invariant(!_isBusy.load());
        invariant(!_guard.has_value());
    }

    static void set(Client* client, ThreadGuardedExecutor instance) {
        auto& clientThreadGuardedExecutor = getThreadGuardedExecutor(client);
        invariant(!clientThreadGuardedExecutor);
        clientThreadGuardedExecutor = std::make_shared<decltype(instance)>(std::move(instance));
    }

    static std::shared_ptr<ThreadGuardedExecutor> get(const Client* client) {
        return getThreadGuardedExecutor(client);
    }

    auto wrapExecutor(OutOfLineExecutor* executor) {
        return std::make_shared<WrappedExecutor>(shared_from_this(), executor);
    }

    void schedule(OutOfLineExecutor* executor, OutOfLineExecutor::Task task) {
        // Since `ThreadGuardedExecutor` is a client decoration, and SSM owns the client object,
        // ServiceStateMachine must be present when tasks are scheduled here.
        auto ssm = _ssm.lock();
        invariant(ssm);

        executor->schedule([this,
                            executor,  // Valid as the executor must be present to run the task
                            task = std::move(task),
                            ssm = std::move(ssm),
                            anchor = shared_from_this()](Status status) mutable {
            if (auto wasBusy = _isBusy.swap(true); wasBusy) {
                // Reschedule if another executor thread is running a task for the client.
                LOGV2_DEBUG(4910704, kDiagnosticLogLevel, "Rescheduling thread-guarded task");
                schedule(executor, std::move(task));
                return;
            }

            invariant(!_guard.has_value());
            _guard.emplace(ssm.get());
            LOGV2_DEBUG(4910701, kDiagnosticLogLevel, "Acquired ThreadGuard in scheduled task");

            ON_BLOCK_EXIT([&] {
                if (_guard.has_value()) {
                    releaseThreadGuard();
                }
            });

            LOGV2_DEBUG(
                4910703, kDiagnosticLogLevel, "Started running task in a thread-guarded context");
            task(status);
        });
    }

    // Must only be called on the thread that owns the guard
    void releaseThreadGuard() {
        invariant(_guard.has_value() && _isBusy.load());
        LOGV2_DEBUG(4910702, kDiagnosticLogLevel, "Releasing the ThreadGuard");
        _guard = boost::none;
        _isBusy.store(false);
    }

private:
    static constexpr auto kDiagnosticLogLevel = 3;

    // Set to `true` if the executor is busy running a task on behalf of the corresponding client.
    AtomicWord<bool> _isBusy{false};

    std::weak_ptr<ServiceStateMachine::Impl> _ssm;
    boost::optional<ThreadGuard> _guard;
};

Future<void> ServiceStateMachine::Impl::sourceMessage() {
    invariant(_inMessage.empty());
    invariant(_state.load() == State::Source);
    _state.store(State::SourceWait);

    auto sourceMsgImpl = [&] {
        const auto& transportMode = executor()->transportMode();
        if (transportMode == transport::Mode::kSynchronous) {
            MONGO_IDLE_THREAD_BLOCK;
            return Future<Message>::makeReady(session()->sourceMessage());
        } else {
            invariant(transportMode == transport::Mode::kAsynchronous);
            return session()->asyncSourceMessage();
        }
    };

    return sourceMsgImpl().onCompletion([this](StatusWith<Message> msg) -> Future<void> {
        if (msg.isOK()) {
            _inMessage = std::move(msg.getValue());
            invariant(!_inMessage.empty());
        }
        sourceCallback(msg.getStatus());
        return Status::OK();
    });
}

Future<void> ServiceStateMachine::Impl::sinkMessage() {
    // Sink our response to the client
    invariant(_state.load() == State::Process);
    _state.store(State::SinkWait);
    auto toSink = std::exchange(_outMessage, {});

    auto sinkMsgImpl = [&] {
        const auto& transportMode = executor()->transportMode();
        if (transportMode == transport::Mode::kSynchronous) {
            // We don't consider ourselves idle while sending the reply since we are still doing
            // work on behalf of the client. Contrast that with sourceMessage() where we are waiting
            // for the client to send us more work to do.
            return Future<void>::makeReady(session()->sinkMessage(std::move(toSink)));
        } else {
            invariant(transportMode == transport::Mode::kAsynchronous);
            return session()->asyncSinkMessage(std::move(toSink));
        }
    };

    return sinkMsgImpl().onCompletion([this](Status status) {
        sinkCallback(std::move(status));
        return Status::OK();
    });
}

void ServiceStateMachine::Impl::sourceCallback(Status status) {
    auto guard = ThreadGuard(this);

    invariant(state() == State::SourceWait);

    auto remote = session()->remote();

    if (status.isOK()) {
        _state.store(State::Process);

        // If the sourceMessage succeeded then we can move to on to process the message. We simply
        // return from here and the future chain in runOnce() will continue to the next state
        // normally.

        // If any other issues arise, close the session.
    } else if (ErrorCodes::isInterruption(status.code()) ||
               ErrorCodes::isNetworkError(status.code())) {
        LOGV2_DEBUG(
            22986,
            2,
            "Session from {remote} encountered a network error during SourceMessage: {error}",
            "Session from remote encountered a network error during SourceMessage",
            "remote"_attr = remote,
            "error"_attr = status);
        _state.store(State::EndSession);
    } else if (status == TransportLayer::TicketSessionClosedStatus) {
        // Our session may have been closed internally.
        LOGV2_DEBUG(22987,
                    2,
                    "Session from {remote} was closed internally during SourceMessage",
                    "remote"_attr = remote);
        _state.store(State::EndSession);
    } else {
        LOGV2(22988,
              "Error receiving request from client. Ending connection from remote",
              "error"_attr = status,
              "remote"_attr = remote,
              "connectionId"_attr = session()->id());
        _state.store(State::EndSession);
    }
    uassertStatusOK(status);
}

void ServiceStateMachine::Impl::sinkCallback(Status status) {
    auto guard = ThreadGuard(this);

    invariant(state() == State::SinkWait);

    // If there was an error sinking the message to the client, then we should print an error and
    // end the session.
    //
    // Otherwise, update the current state depending on whether we're in exhaust or not and return
    // from this function to let _runOnce continue the future chaining of state transitions.
    if (!status.isOK()) {
        LOGV2(22989,
              "Error sending response to client. Ending connection from remote",
              "error"_attr = status,
              "remote"_attr = session()->remote(),
              "connectionId"_attr = session()->id());
        _state.store(State::EndSession);
        uassertStatusOK(status);
    } else if (_inExhaust) {
        _state.store(State::Process);
    } else {
        _state.store(State::Source);
    }
}

Future<void> ServiceStateMachine::Impl::processMessage() {
    invariant(!_inMessage.empty());

    TrafficRecorder::get(_serviceContext)
        .observe(session(), _serviceContext->getPreciseClockSource()->now(), _inMessage);

    auto& compressorMgr = MessageCompressorManager::forSession(session());

    _compressorId = boost::none;
    if (_inMessage.operation() == dbCompressed) {
        MessageCompressorId compressorId;
        auto swm = compressorMgr.decompressMessage(_inMessage, &compressorId);
        uassertStatusOK(swm.getStatus());
        _inMessage = swm.getValue();
        _compressorId = compressorId;
    }

    networkCounter.hitLogicalIn(_inMessage.size());

    // Pass sourced Message to handler to generate response.
    invariant(!_opCtx);
    _opCtx = Client::getCurrent()->makeOperationContext();
    if (_inExhaust) {
        _opCtx->markKillOnClientDisconnect();
    }

    // The handleRequest is implemented in a subclass for mongod/mongos and actually all the
    // database work for this request.
    return _sep->handleRequest(_opCtx.get(), _inMessage)
        .then([this, &compressorMgr = compressorMgr](DbResponse dbresponse) mutable -> void {
            // opCtx must be killed and delisted here so that the operation cannot show up in
            // currentOp results after the response reaches the client. The destruction is postponed
            // for later to mitigate its performance impact on the critical path of execution.
            _serviceContext->killAndDelistOperation(_opCtx.get(),
                                                    ErrorCodes::OperationIsKilledAndDelisted);

            // Format our response, if we have one
            Message& toSink = dbresponse.response;
            if (!toSink.empty()) {
                invariant(!OpMsg::isFlagSet(_inMessage, OpMsg::kMoreToCome));
                invariant(!OpMsg::isFlagSet(toSink, OpMsg::kChecksumPresent));

                // Update the header for the response message.
                toSink.header().setId(nextMessageId());
                toSink.header().setResponseToMsgId(_inMessage.header().getId());
                if (OpMsg::isFlagSet(_inMessage, OpMsg::kChecksumPresent)) {
#ifdef MONGO_CONFIG_SSL
                    if (!SSLPeerInfo::forSession(session()).isTLS) {
                        OpMsg::appendChecksum(&toSink);
                    }
#else
                    OpMsg::appendChecksum(&toSink);
#endif
                }

                // If the incoming message has the exhaust flag set, then we bypass the normal RPC
                // behavior. We will sink the response to the network, but we also synthesize a new
                // request, as if we sourced a new message from the network. This new request is
                // sent to the database once again to be processed. This cycle repeats as long as
                // the command indicates the exhaust stream should continue.
                _inMessage = makeExhaustMessage(_inMessage, &dbresponse);
                _inExhaust = !_inMessage.empty();

                networkCounter.hitLogicalOut(toSink.size());

                if (_compressorId) {
                    auto swm = compressorMgr.compressMessage(toSink, &_compressorId.value());
                    uassertStatusOK(swm.getStatus());
                    toSink = swm.getValue();
                }

                TrafficRecorder::get(_serviceContext)
                    .observe(session(), _serviceContext->getPreciseClockSource()->now(), toSink);

                _outMessage = std::move(toSink);
            } else {
                _state.store(State::Source);
                _inMessage.reset();
                _outMessage.reset();
                _inExhaust = false;
            }
        });
}

void ServiceStateMachine::Impl::start(ServiceExecutorContext seCtx) {
    {
        stdx::lock_guard lk(*_clientPtr);

        ServiceExecutorContext::set(_clientPtr, std::move(seCtx));
    }

    // Set the executor decoration here to ensure `shared_from_this()` returns a valid pointer
    ThreadGuardedExecutor::set(_clientPtr, ThreadGuardedExecutor(shared_from_this()));

    ThreadGuardedExecutor::get(_clientPtr)
        ->schedule(
            executor(),
            GuaranteedExecutor::enforceRunOnce([this, anchor = shared_from_this()](Status status) {
                // If this is the first run of the SSM, then update its state to Source
                if (state() == State::Created) {
                    _state.store(State::Source);
                }

                runOnce();
            }));
}

void ServiceStateMachine::Impl::runOnce() {
    makeReadyFutureWith([&]() -> Future<void> {
        if (_inExhaust) {
            return Status::OK();
        } else {
            return sourceMessage();
        }
    })
        .then([this]() { return processMessage(); })
        .then([this]() -> Future<void> {
            if (_outMessage.empty()) {
                return Status::OK();
            }

            return sinkMessage();
        })
        .getAsync([this](Status status) {
            // Destroy the opCtx (already killed) here, to potentially use the delay between
            // clients' requests to hide the destruction cost.
            if (MONGO_likely(_opCtx)) {
                _opCtx.reset();
            }
            if (!status.isOK()) {
                _state.store(State::EndSession);
                // The service executor failed to schedule the task. This could for example be that
                // we failed to start a worker thread. Terminate this connection to leave the system
                // in a valid state.
                LOGV2_WARNING_OPTIONS(4910400,
                                      {logv2::LogComponent::kExecutor},
                                      "Terminating session due to error: {error}",
                                      "Terminating session due to error",
                                      "error"_attr = status);
                terminate();

                ThreadGuardedExecutor::get(_clientPtr)
                    ->schedule(executor(),
                               GuaranteedExecutor::enforceRunOnce(
                                   [this, anchor = shared_from_this()](Status status) {
                                       cleanupSession();
                                   }));
                return;
            }

            ThreadGuardedExecutor::get(_clientPtr)
                ->schedule(executor(), GuaranteedExecutor::enforceRunOnce([this](Status status) {
                               runOnce();
                           }));
        });
}

void ServiceStateMachine::Impl::terminate() {
    if (state() == State::Ended)
        return;

    session()->end();
}

void ServiceStateMachine::Impl::terminateIfTagsDontMatch(transport::Session::TagMask tags) {
    if (state() == State::Ended)
        return;

    auto sessionTags = session()->getTags();

    // If terminateIfTagsDontMatch gets called when we still are 'pending' where no tags have been
    // set, then skip the termination check.
    if ((sessionTags & tags) || (sessionTags & transport::Session::kPending)) {
        LOGV2(
            22991, "Skip closing connection for connection", "connectionId"_attr = session()->id());
        return;
    }

    terminate();
}

void ServiceStateMachine::Impl::terminateAndLogIfError(Status status) {
    if (!status.isOK()) {
        LOGV2_WARNING_OPTIONS(22993,
                              {logv2::LogComponent::kExecutor},
                              "Terminating session due to error: {error}",
                              "Terminating session due to error",
                              "error"_attr = status);
        terminate();
    }
}

void ServiceStateMachine::Impl::cleanupExhaustResources() noexcept try {
    if (!_inExhaust) {
        return;
    }
    auto request = OpMsgRequest::parse(_inMessage);
    // Clean up cursor for exhaust getMore request.
    if (request.getCommandName() == "getMore"_sd) {
        auto cursorId = request.body["getMore"].Long();
        auto opCtx = Client::getCurrent()->makeOperationContext();
        // Fire and forget. This is a best effort attempt to immediately clean up the exhaust
        // cursor. If the killCursors request fails here for any reasons, it will still be cleaned
        // up once the cursor times out.
        _sep->handleRequest(opCtx.get(), makeKillCursorsMessage(cursorId)).get();
    }
} catch (const DBException& e) {
    LOGV2(22992,
          "Error cleaning up resources for exhaust requests: {error}",
          "Error cleaning up resources for exhaust requests",
          "error"_attr = e.toStatus());
}

void ServiceStateMachine::Impl::setCleanupHook(std::function<void()> hook) {
    invariant(state() == State::Created);
    _cleanupHook = std::move(hook);
}

void ServiceStateMachine::Impl::cleanupSession() {
    // Ensure the delayed destruction of opCtx always happens before doing the cleanup.
    if (MONGO_likely(_opCtx)) {
        _opCtx.reset();
    }
    invariant(!_opCtx);

    cleanupExhaustResources();

    {
        stdx::lock_guard lk(*_clientPtr);
        transport::ServiceExecutorContext::reset(_clientPtr);
    }

    if (auto cleanupHook = std::exchange(_cleanupHook, {})) {
        cleanupHook();
    }

    _state.store(State::Ended);

    _inMessage.reset();

    _outMessage.reset();
}

ServiceStateMachine::ServiceStateMachine(ServiceContext::UniqueClient client)
    : _impl{std::make_shared<Impl>(std::move(client))} {}

void ServiceStateMachine::start(ServiceExecutorContext seCtx) {
    _impl->start(std::move(seCtx));
}

void ServiceStateMachine::setCleanupHook(std::function<void()> hook) {
    _impl->setCleanupHook(std::move(hook));
}

void ServiceStateMachine::terminate() {
    _impl->terminate();
}

void ServiceStateMachine::terminateIfTagsDontMatch(transport::Session::TagMask tags) {
    _impl->terminateIfTagsDontMatch(tags);
}

}  // namespace transport
}  // namespace mongo