summaryrefslogtreecommitdiff
path: root/src/mongo/util/descriptive_stats-inl.h
blob: 2b635bfdfbaa2914fd939cb35ac9ac58f0e72613 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*    Copyright 2012 10gen Inc.
 *
 *    Licensed under the Apache License, Version 2.0 (the "License");
 *    you may not use this file except in compliance with the License.
 *    You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 *    Unless required by applicable law or agreed to in writing, software
 *    distributed under the License is distributed on an "AS IS" BASIS,
 *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *    See the License for the specific language governing permissions and
 *    limitations under the License.
 *
 *
 *    Based upon boost.accumulators (www.boost.org/libs/accumulators/),
 *    distributed under the Boost Software License, Version 1.0.
 *    See distrc/THIRD_PARTY_NOTICES for the full License Notice for Boost.
 *
 */

#pragma once

#include <algorithm>
#include <limits>

#include "mongo/util/mongoutils/str.h"

namespace mongo {

    template <class Sample>
    BasicEstimators<Sample>::BasicEstimators() :
            _count(0),
            _sum(0),
            _diff(0),
            _min(std::numeric_limits<Sample>::max()),
            _max(std::numeric_limits<Sample>::min()) {

    }

    template <class Sample>
    BasicEstimators<Sample>& BasicEstimators<Sample>::operator <<(const Sample sample) {
        const double oldMean = (_count > 0) ? _sum / _count : 0;
        const double delta = oldMean - static_cast<double>(sample);
        const double weight = static_cast<double>(_count) / (_count + 1);
        _diff += delta * delta * weight;
        _sum += static_cast<double>(sample);
        _count++;
        _min = std::min(sample, _min);
        _max = std::max(sample, _max);
        return *this;
    }

    template <class Sample>
    void BasicEstimators<Sample>::appendBasicToBSONObjBuilder(BSONObjBuilder& b) const {
        b << "count" << static_cast<long long>(count())
          << "mean" << mean()
          << "stddev" << stddev()
          << "min" << min()
          << "max" << max();
    }

    template <std::size_t NumQuantiles>
    DistributionEstimators<NumQuantiles>::DistributionEstimators() :
            _count(0) {

        for(std::size_t i = 0; i < NumMarkers; i++) {
            _actual_positions[i] = i + 1;
        }

        for(std::size_t i = 0; i < NumMarkers; i++) {
            _desired_positions[i] = 1.0 + (2.0 * (NumQuantiles + 1.0) * _positions_increments(i));
        }
    }

    /*
     * The quantile estimation follows the extended_p_square implementation in boost.accumulators.
     * It differs by removing the ability to request arbitrary quantiles and computing exactly
     * 'NumQuantiles' equidistant quantiles (plus minimum and maximum) instead.
     * See http://www.boost.org/doc/libs/1_51_0/doc/html/boost/accumulators/impl/extended_p_square_impl.html ,
     * R. Jain and I. Chlamtac, The P^2 algorithmus for dynamic calculation of quantiles and histograms without storing observations, Communications of the ACM, Volume 28 (October), Number 10, 1985, p. 1076-1085. and
     * K. E. E. Raatikainen, Simultaneous estimation of several quantiles, Simulation, Volume 49, Number 4 (October), 1986, p. 159-164.
     */
    template <std::size_t NumQuantiles>
    DistributionEstimators<NumQuantiles>&
    DistributionEstimators<NumQuantiles>::operator <<(const double sample) {

        // first accumulate num_markers samples
        if (_count++ < NumMarkers) {
            _heights[_count - 1] = sample;

            if (_count == NumMarkers)
            {
                std::sort(_heights, _heights + NumMarkers);
            }
        }
        else {
            std::size_t sample_cell = 1;

            // find cell k = sample_cell such that heights[k-1] <= sample < heights[k]
            if(sample < _heights[0])
            {
                _heights[0] = sample;
                sample_cell = 1;
            }
            else if (sample >= _heights[NumMarkers - 1])
            {
                _heights[NumMarkers - 1] = sample;
                sample_cell = NumMarkers - 1;
            }
            else {
                double* it = std::upper_bound(_heights,
                                              _heights + NumMarkers,
                                              sample);

                sample_cell = std::distance(_heights, it);
            }

            // update actual positions of all markers above sample_cell index
            for(std::size_t i = sample_cell; i < NumMarkers; i++) {
                _actual_positions[i]++;
            }

            // update desired positions of all markers
            for(std::size_t i = 0; i < NumMarkers; i++) {
                _desired_positions[i] += _positions_increments(i);
            }

            // adjust heights and actual positions of markers 1 to num_markers-2 if necessary
            for(std::size_t i = 1; i <= NumMarkers - 2; i++) {
                // offset to desired position
                double d = _desired_positions[i] - _actual_positions[i];

                // offset to next position
                double dp = _actual_positions[i + 1] - _actual_positions[i];

                // offset to previous position
                double dm = _actual_positions[i - 1] - _actual_positions[i];

                // height ds
                double hp = (_heights[i + 1] - _heights[i]) / dp;
                double hm = (_heights[i - 1] - _heights[i]) / dm;

                if((d >= 1 && dp > 1) || (d <= -1 && dm < -1))
                {
                    short sign_d = static_cast<short>(d / std::abs(d));

                    double h = _heights[i] + sign_d / (dp - dm) * ((sign_d - dm)*hp
                               + (dp - sign_d) * hm);

                    // try adjusting heights[i] using p-squared formula
                    if(_heights[i - 1] < h && h < _heights[i + 1])
                    {
                        _heights[i] = h;
                    }
                    else
                    {
                        // use linear formula
                        if(d > 0)
                        {
                            _heights[i] += hp;
                        }
                        if(d < 0)
                        {
                            _heights[i] -= hm;
                        }
                    }
                    _actual_positions[i] += sign_d;
                }
            }
        }

        return *this;
    }

    template <std::size_t NumQuantiles>
    void DistributionEstimators<NumQuantiles>::appendQuantilesToBSONArrayBuilder(
            BSONArrayBuilder& arr) const {

        verify(quantilesReady());
        for (std::size_t i = 0; i <= NumQuantiles + 1; i++) {
            arr << quantile(i);
        }
    }

    template <std::size_t NumQuantiles>
    inline double DistributionEstimators<NumQuantiles>::_positions_increments(std::size_t i) const {
        return static_cast<double>(i) / (2 * (NumQuantiles + 1));
    }

    template <class Sample, std::size_t NumQuantiles>
    BSONObj SummaryEstimators<Sample, NumQuantiles>::statisticSummaryToBSONObj() const {
        BSONObjBuilder b;
        this->BasicEstimators<Sample>::appendBasicToBSONObjBuilder(b);
        if (this->DistributionEstimators<NumQuantiles>::quantilesReady()) {
            // Not using appendQuantiles to be explicit about which probability each quantile
            // refers to. This way the user does not need to count the quantiles or know in
            // advance how many quantiles were computed to figure out their meaning.
            BSONObjBuilder quantilesBuilder(b.subobjStart("quantiles"));
            for (size_t i = 1; i <= NumQuantiles; i++) {
                const double probability =
                        this->DistributionEstimators<NumQuantiles>::probability(i);
                const double quantile =
                        this->DistributionEstimators<NumQuantiles>::quantile(i);
                quantilesBuilder.append(std::string(mongoutils::str::stream() << probability),
                                        quantile);
            }
            quantilesBuilder.doneFast();
        }
        return b.obj();
    }

} // namespace mongo