summaryrefslogtreecommitdiff
path: root/src/mongo/util/heap_profiler.cpp
blob: c2410ef2734f573454a8d637a0d90d40786f6fd0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/**
 *    Copyright (C) 2016 MongoDB Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects
 *    for all of the code used other than as permitted herein. If you modify
 *    file(s) with this exception, you may extend this exception to your
 *    version of the file(s), but you are not obligated to do so. If you do not
 *    wish to do so, delete this exception statement from your version. If you
 *    delete this exception statement from all source files in the program,
 *    then also delete it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kDefault

#include "mongo/platform/basic.h"

#include "mongo/base/init.h"
#include "mongo/base/static_assert.h"
#include "mongo/config.h"
#include "mongo/db/commands/server_status.h"
#include "mongo/db/server_parameters.h"
#include "mongo/util/log.h"

#include <gperftools/malloc_hook.h>
#include <third_party/murmurhash3/MurmurHash3.h>

// for dlfcn.h and backtrace
#if defined(_POSIX_VERSION) && defined(MONGO_CONFIG_HAVE_EXECINFO_BACKTRACE)

#include <dlfcn.h>
#include <execinfo.h>

//
// Sampling heap profiler
//
// Intercepts allocate and free calls to track approximate number of live allocated bytes
// associated with each allocating stack trace at each point in time.
//
// Hooks into tcmalloc via the MallocHook interface, but has no dependency
// on any allocator internals; could be used with any allocator via similar
// hooks, or via shims.
//
// Adds no space overhead to each allocated object - allocated objects
// and associated stack traces are recorded in separate pre-allocated
// fixed-size hash tables. Size of the separate hash tables is configurable
// but something on the order of tens of MB should suffice for most purposes.
//
// Performance overhead is small because it only samples a fraction of the allocations.
//
// Samples allocate calls every so many bytes allocated.
//   * a stack trace is obtained, and entered in a stack hash table if it's a new stack trace
//   * the number of active bytes charged to that stack trace is increased
//   * the allocated object, stack trace, and number of bytes is recorded in an object hash table
// For each free call if the freed object is in the object hash table.
//   * the number of active bytes charged to the allocating stack trace is decreased
//   * the object is removed from the object hash table
//
// Enable at startup time (only) with
//     mongod --setParameter heapProfilingEnabled=true
//
// If enabled, adds a heapProfile section to serverStatus as follows:
//
// heapProfile: {
//     stats: {
//         //  internal stats related to heap profiling process (collisions, number of stacks, etc.)
//     }
//     stacks: {
//         stack_n_: {             // one for each stack _n_
//             activeBytes: ...,   // number of active bytes allocated by this stack
//             stack: [            // the stack itself
//                 "frame0",
//                 "frame1",
//                 ...
//            ]
//        }
//    }
//
// Each new stack encountered is also logged to mongod log with a message like
//     .... stack_n_: {0: "frame0", 1: "frame1", ...}
//
// Can be used in one of two ways:
//
// Via FTDC - strings are not captured by FTDC, so the information
// recorded in FTDC for each sample is essentially of the form
// {stack_n_: activeBytes} for each stack _n_. The timeseries tool
// will present one graph per stack, identified by the label stack_n_,
// showing active bytes that were allocated by that stack at each
// point in time. The mappings from stack_n_ to the actual stack can
// be found in mongod log.
//
// Via serverStatus - the serverStatus section described above
// contains complete information, including the stack trace.  It can
// be obtained and examined manually, and can be further processed by
// tools.
//
// We will need about 1 active ObjInfo for every sampleIntervalBytes live bytes,
// so max active memory we can handle is sampleIntervalBytes * kMaxObjInfos.
// With the current defaults of
//     kMaxObjInfos = 1024 * 1024
//     sampleIntervalBytes = 256 * 1024
// the following information is computed and logged on startup (see HeapProfiler()):
//     maxActiveMemory 262144 MB
//     objTableSize 72 MB
//     stackTableSize 16.6321MB
// So the defaults allow handling very large memories at a reasonable sampling interval
// and acceptable size overhead for the hash tables.
//

namespace mongo {
namespace {

//
// Simple hash table maps Key->Value.
// All storage is pre-allocated at creation.
// Access functions take a hash specifying a bucket as the first parameter to avoid re-computing
// hash unnecessarily; caller must ensure that hash is correctly computed from the appropriate Key.
// Key must implement operator== to support find().
// Key and Value must both support assignment to allow copying key and value into table on insert.
//
// Concurrency rules:
//     Reads (find(), isBucketEmpty(), forEach()) MAY be called concurrently with each other.
//     Writes (insert(), remove()) may NOT be called concurrently with each other.
//     Concurrency of reads and writes is as follows:
//         find() may NOT be called concurrently with any write.
//         isBucketEmpty() MAY be called concurrently with any write.
//         forEach()
//             MAY be called concurrently with insert() but NOT remove()
//             does not provide snapshot semantics wrt set of entries traversed
//             caller must ensure safety wrt concurrent modification of Value of existing entry
//

using Hash = uint32_t;

template <class Key, class Value>
class HashTable {
    MONGO_DISALLOW_COPYING(HashTable);

private:
    struct Entry {
        Key key{};
        Value value{};
        std::atomic<Entry*> next{nullptr};  // NOLINT
        std::atomic<bool> valid{false};     // NOLINT
        Entry() {}
    };

    const size_t maxEntries;        // we allocate storage for this many entries on creation
    std::atomic_size_t numEntries;  // number of entries currently in use  NOLINT
    size_t numBuckets;              // number of buckets, computed as numEntries * loadFactor

    // pre-allocate buckets and entries
    std::unique_ptr<std::atomic<Entry*>[]> buckets;  // NOLINT
    std::unique_ptr<Entry[]> entries;

    std::atomic_size_t nextEntry;  // first entry that's never been used  NOLINT
    Entry* freeEntry;              // linked list of entries returned to us by removeEntry

public:
    HashTable(size_t maxEntries, int loadFactor)
        : maxEntries(maxEntries),
          numEntries(0),
          numBuckets(maxEntries * loadFactor),
          buckets(new std::atomic<Entry*>[numBuckets]()),  // NOLINT
          entries(new Entry[maxEntries]()),
          nextEntry(0),
          freeEntry(nullptr) {}

    // Allocate a new entry in the specified hash bucket.
    // Stores a copy of the specified Key and Value.
    // Returns a pointer to the newly allocated Value, or nullptr if out of space.
    Value* insert(Hash hash, const Key& key, const Value& value) {
        hash %= numBuckets;
        Entry* entry = nullptr;
        if (freeEntry) {
            entry = freeEntry;
            freeEntry = freeEntry->next;
        } else if (nextEntry < maxEntries) {
            entry = &entries[nextEntry++];
        }
        if (entry) {
            entry->next = buckets[hash].load();
            buckets[hash] = entry;
            entry->key = key;
            entry->value = value;
            entry->valid = true;  // signal that the entry is well-formed and may be traversed
            numEntries++;
            return &entry->value;
        } else {
            return nullptr;
        }
    }

    // Find the entry containing Key in the specified hash bucket.
    // Returns a pointer to the corresponding Value object, or nullptr if not found.
    Value* find(Hash hash, const Key& key) {
        hash %= numBuckets;
        for (Entry* entry = buckets[hash]; entry; entry = entry->next)
            if (entry->key == key)
                return &entry->value;
        return nullptr;
    }

    // Remove an entry specified by key.
    void remove(Hash hash, const Key& key) {
        hash %= numBuckets;
        for (auto nextp = &buckets[hash]; *nextp; nextp = &((*nextp).load()->next)) {
            Entry* entry = *nextp;
            if (entry->key == key) {
                *nextp = entry->next.load();
                entry->valid = false;  // first signal entry is invalid as it may get reused
                entry->next = freeEntry;
                freeEntry = entry;
                numEntries--;
                break;
            }
        }
    }

    // Traverse the array of pre-allocated entries, calling f(key, value) on each valid entry.
    // This may be called concurrently with insert() but not remove()
    //     atomic entry.valid ensures that it will see only well-formed entries
    //     nextEntry is atomic to guard against torn reads as nextEntry is updated
    // Note however it is not guaranteed to provide snapshot semantics wrt the set of entries,
    // and caller must ensure safety wrt concurrent updates to the Value of an entry
    template <typename F>
    void forEach(F f) {
        for (size_t i = 0; i < nextEntry; i++) {
            Entry& entry = entries[i];
            if (entry.valid)  // only traverse well-formed entries
                f(entry.key, entry.value);
        }
    }

    // Determines whether the specified hash bucket is empty. May be called concurrently with
    // insert() and remove(). Concurrent visibility on other threads is guaranteed because
    // buckets[hash] is atomic.
    bool isEmptyBucket(Hash hash) {
        hash %= numBuckets;
        return buckets[hash] == nullptr;
    }

    // Number of entries.
    size_t size() {
        return numEntries;
    }

    // Highwater mark of number of entries used, for reporting stats.
    size_t maxSizeSeen() {
        return nextEntry;
    }

    // Returns total allocated size of the hash table, for reporting stats.
    size_t memorySizeBytes() {
        return numBuckets * sizeof(buckets[0]) + maxEntries * sizeof(entries[0]);
    }
};


class HeapProfiler {
private:
    // 0: sampling internally disabled
    // 1: sample every allocation - byte accurate but slow and big
    // >1: sample ever sampleIntervalBytes bytes allocated - less accurate but fast and small
    std::atomic_size_t sampleIntervalBytes;  // NOLINT

    stdx::mutex hashtable_mutex;  // guards updates to both object and stack hash tables
    stdx::mutex stackinfo_mutex;  // guards against races updating the StackInfo bson representation

    // cumulative bytes allocated - determines when samples are taken
    std::atomic_size_t bytesAllocated{0};  // NOLINT

    // estimated currently active bytes - sum of activeBytes for all stacks
    size_t totalActiveBytes = 0;

    //
    // Hash table of stacks
    //

    using FrameInfo = void*;  // per-frame information is just the IP

    static const int kMaxStackInfos = 20000;         // max number of unique call sites we handle
    static const int kStackHashTableLoadFactor = 2;  // keep loading <50%
    static const int kMaxFramesPerStack = 100;       // max depth of stack

    // stack HashTable Key
    struct Stack {
        int numFrames = 0;
        std::array<FrameInfo, kMaxFramesPerStack> frames;
        Stack() {}

        bool operator==(const Stack& that) {
            return this->numFrames == that.numFrames &&
                std::equal(frames.begin(), frames.begin() + numFrames, that.frames.begin());
        }

        Hash hash() {
            Hash hash;
            MONGO_STATIC_ASSERT_MSG(sizeof(frames) == sizeof(FrameInfo) * kMaxFramesPerStack,
                                    "frames array is not dense");
            MurmurHash3_x86_32(frames.data(), numFrames * sizeof(FrameInfo), 0, &hash);
            return hash;
        }
    };

    // Stack HashTable Value.
    struct StackInfo {
        int stackNum = 0;        // used for stack short name
        BSONObj stackObj{};      // symbolized representation
        size_t activeBytes = 0;  // number of live allocated bytes charged to this stack
        explicit StackInfo(int stackNum) : stackNum(stackNum) {}
        StackInfo() {}
    };

    // The stack HashTable itself.
    HashTable<Stack, StackInfo> stackHashTable{kMaxStackInfos, kStackHashTableLoadFactor};

    // frames to skip at top and bottom of backtrace when reporting stacks
    int skipStartFrames = 0;
    int skipEndFrames = 0;


    //
    // Hash table of allocated objects.
    //

    static const int kMaxObjInfos = 1024 * 1024;   // maximum tracked allocations
    static const int kObjHashTableLoadFactor = 4;  // keep hash table loading <25%

    // Obj HashTable Key.
    struct Obj {
        const void* objPtr = nullptr;
        explicit Obj(const void* objPtr) : objPtr(objPtr) {}
        Obj() {}

        bool operator==(const Obj& that) {
            return this->objPtr == that.objPtr;
        }

        Hash hash() {
            Hash hash = 0;
            MurmurHash3_x86_32(&objPtr, sizeof(objPtr), 0, &hash);
            return hash;
        }
    };

    // Obj HashTable Value.
    struct ObjInfo {
        size_t accountedLen = 0;
        StackInfo* stackInfo = nullptr;
        ObjInfo(size_t accountedLen, StackInfo* stackInfo)
            : accountedLen(accountedLen), stackInfo(stackInfo) {}
        ObjInfo() {}
    };

    // The obj HashTable itself.
    HashTable<Obj, ObjInfo> objHashTable{kMaxObjInfos, kObjHashTableLoadFactor};


    // If we encounter an error that doesn't allow us to proceed, for
    // example out of space for new hash table entries, we internally
    // disable profiling and then log an error message.
    void disable(const char* msg) {
        sampleIntervalBytes = 0;
        log() << msg;
    }

    //
    // Record an allocation.
    //
    void _alloc(const void* objPtr, size_t objLen) {
        // still profiling?
        if (sampleIntervalBytes == 0)
            return;

        // Sample every sampleIntervalBytes bytes of allocation.
        // We charge each sampled stack with the amount of memory allocated since the last sample
        // this could grossly overcharge any given stack sample, but on average over a large
        // number of samples will be correct.
        size_t lastSample = bytesAllocated.fetch_add(objLen);
        size_t currentSample = lastSample + objLen;
        size_t accountedLen = sampleIntervalBytes *
            (currentSample / sampleIntervalBytes - lastSample / sampleIntervalBytes);
        if (accountedLen == 0)
            return;

        // Get backtrace.
        Stack tempStack;
        tempStack.numFrames = backtrace(tempStack.frames.data(), kMaxFramesPerStack);

        // Compute backtrace hash.
        Hash stackHash = tempStack.hash();

        // Now acquire lock.
        stdx::lock_guard<stdx::mutex> lk(hashtable_mutex);

        // Look up stack in stackHashTable.
        StackInfo* stackInfo = stackHashTable.find(stackHash, tempStack);

        // If new stack, store in stackHashTable.
        if (!stackInfo) {
            StackInfo newStackInfo(stackHashTable.size() /*stackNum*/);
            stackInfo = stackHashTable.insert(stackHash, tempStack, newStackInfo);
            if (!stackInfo) {
                disable("too many stacks; disabling heap profiling");
                return;
            }
        }

        // Count the bytes.
        totalActiveBytes += accountedLen;
        stackInfo->activeBytes += accountedLen;

        // Enter obj in objHashTable.
        Obj obj(objPtr);
        ObjInfo objInfo(accountedLen, stackInfo);
        if (!objHashTable.insert(obj.hash(), obj, objInfo)) {
            disable("too many live objects; disabling heap profiling");
            return;
        }
    }

    //
    // Record a freed object.
    //
    void _free(const void* objPtr) {
        // still profiling?
        if (sampleIntervalBytes == 0)
            return;

        // Compute hash, quick return before locking if bucket is empty (common case).
        // This is crucial for performance because we need to check the hash table on every _free.
        // Visibility of the bucket entry if the _alloc was done on a different thread is
        // guaranteed because isEmptyBucket consults an atomic pointer.
        Obj obj(objPtr);
        Hash objHash = obj.hash();
        if (objHashTable.isEmptyBucket(objHash))
            return;

        // Now acquire lock.
        stdx::lock_guard<stdx::mutex> lk(hashtable_mutex);

        // Remove the object from the hash bucket if present.
        ObjInfo* objInfo = objHashTable.find(objHash, obj);
        if (objInfo) {
            totalActiveBytes -= objInfo->accountedLen;
            objInfo->stackInfo->activeBytes -= objInfo->accountedLen;
            objHashTable.remove(objHash, obj);
        }
    }

    //
    // Generate bson representation of stack.
    //
    void generateStackIfNeeded(Stack& stack, StackInfo& stackInfo) {
        if (!stackInfo.stackObj.isEmpty())
            return;
        BSONArrayBuilder builder;
        for (int j = skipStartFrames; j < stack.numFrames - skipEndFrames; j++) {
            Dl_info dli;
            StringData frameString;
            char* demangled = nullptr;
            if (dladdr(stack.frames[j], &dli)) {
                if (dli.dli_sname) {
                    int status;
                    demangled = abi::__cxa_demangle(dli.dli_sname, 0, 0, &status);
                    if (demangled) {
                        // strip off function parameters as they are very verbose and not useful
                        char* p = strchr(demangled, '(');
                        if (p)
                            frameString = StringData(demangled, p - demangled);
                        else
                            frameString = demangled;
                    } else {
                        frameString = dli.dli_sname;
                    }
                }
            }
            if (frameString.empty()) {
                std::ostringstream s;
                s << stack.frames[j];
                frameString = s.str();
            }
            builder.append(frameString);
            if (demangled)
                free(demangled);
        }
        stackInfo.stackObj = builder.obj();
        log() << "heapProfile stack" << stackInfo.stackNum << ": " << stackInfo.stackObj;
    }

    //
    // Generate serverStatus section.
    //

    bool logGeneralStats = true;  // first time only

    // In order to reduce load on ftdc we track the stacks we deem important enough to emit
    // once a stack is deemed "important" it remains important from that point on.
    // "Important" is a sticky quality to improve the stability of the set of stacks we emit,
    // and we always emit them in stackNum order, greatly improving ftdc compression efficiency.
    std::set<StackInfo*, bool (*)(StackInfo*, StackInfo*)> importantStacks{
        [](StackInfo* a, StackInfo* b) -> bool { return a->stackNum < b->stackNum; }};

    int numImportantSamples = 0;                // samples currently included in importantStacks
    const int kMaxImportantSamples = 4 * 3600;  // reset every 4 hours at default 1 sample / sec

    void _generateServerStatusSection(BSONObjBuilder& builder) {
        // compute and log some informational stats first time through
        if (logGeneralStats) {
            const size_t maxActiveMemory = sampleIntervalBytes * kMaxObjInfos;
            const size_t objTableSize = objHashTable.memorySizeBytes();
            const size_t stackTableSize = stackHashTable.memorySizeBytes();
            const double MB = 1024 * 1024;
            log() << "sampleIntervalBytes " << sampleIntervalBytesParameter << "; "
                  << "maxActiveMemory " << maxActiveMemory / MB << " MB; "
                  << "objTableSize " << objTableSize / MB << " MB; "
                  << "stackTableSize " << stackTableSize / MB << " MB";
            logGeneralStats = false;
        }

        // Stats subsection.
        BSONObjBuilder statsBuilder(builder.subobjStart("stats"));
        statsBuilder.appendNumber("totalActiveBytes", totalActiveBytes);
        statsBuilder.appendNumber("bytesAllocated", bytesAllocated);
        statsBuilder.appendNumber("numStacks", stackHashTable.size());
        statsBuilder.appendNumber("currentObjEntries", objHashTable.size());
        statsBuilder.appendNumber("maxObjEntriesUsed", objHashTable.maxSizeSeen());
        statsBuilder.doneFast();

        // Guard against races updating the StackInfo bson representation.
        stdx::lock_guard<stdx::mutex> lk(stackinfo_mutex);

        // Traverse stackHashTable accumulating potential stacks to emit.
        // We do this traversal without locking hashtable_mutex because we need to use the heap.
        // forEach guarantees this is safe wrt to insert(), and we never call remove().
        // We use stackinfo_mutex to ensure safety wrt concurrent updates to the StackInfo objects.
        // We can get skew between entries, which is ok.
        std::vector<StackInfo*> stackInfos;
        stackHashTable.forEach([&](Stack& stack, StackInfo& stackInfo) {
            if (stackInfo.activeBytes) {
                generateStackIfNeeded(stack, stackInfo);
                stackInfos.push_back(&stackInfo);
            }
        });

        // Sort the stacks and find enough stacks to account for at least 99% of the active bytes
        // deem any stack that has ever met this criterion as "important".
        auto sortByActiveBytes = [](StackInfo* a, StackInfo* b) -> bool {
            return a->activeBytes > b->activeBytes;
        };
        std::stable_sort(stackInfos.begin(), stackInfos.end(), sortByActiveBytes);
        size_t threshold = totalActiveBytes * 0.99;
        size_t cumulative = 0;
        for (auto it = stackInfos.begin(); it != stackInfos.end(); ++it) {
            StackInfo* stackInfo = *it;
            importantStacks.insert(stackInfo);
            cumulative += stackInfo->activeBytes;
            if (cumulative > threshold)
                break;
        }

        // Build the stacks subsection by emitting the "important" stacks.
        BSONObjBuilder stacksBuilder(builder.subobjStart("stacks"));
        for (auto it = importantStacks.begin(); it != importantStacks.end(); ++it) {
            StackInfo* stackInfo = *it;
            std::ostringstream shortName;
            shortName << "stack" << stackInfo->stackNum;
            BSONObjBuilder stackBuilder(stacksBuilder.subobjStart(shortName.str()));
            stackBuilder.appendNumber("activeBytes", stackInfo->activeBytes);
            stackBuilder.append("stack", stackInfo->stackObj);
        }
        stacksBuilder.doneFast();

        // importantStacks grows monotonically, so it can accumulate unneeded stacks,
        // so we clear it periodically.
        if (++numImportantSamples >= kMaxImportantSamples) {
            log() << "clearing importantStacks";
            importantStacks.clear();
            numImportantSamples = 0;
        }
    }

    //
    // Static hooks to give to the allocator.
    //

    static void alloc(const void* obj, size_t objLen) {
        heapProfiler->_alloc(obj, objLen);
    }

    static void free(const void* obj) {
        heapProfiler->_free(obj);
    }

public:
    static HeapProfiler* heapProfiler;
    static bool enabledParameter;
    static long long sampleIntervalBytesParameter;

    HeapProfiler() {
        // Set sample interval from the parameter.
        sampleIntervalBytes = sampleIntervalBytesParameter;

        // This is our only allocator dependency - ifdef and change as
        // appropriate for other allocators, using hooks or shims.
        // For tcmalloc we skip two frames that are internal to the allocator
        // so that the top frame is the public tc_* function.
        skipStartFrames = 2;
        skipEndFrames = 0;
        MallocHook::AddNewHook(alloc);
        MallocHook::AddDeleteHook(free);
    }

    static void generateServerStatusSection(BSONObjBuilder& builder) {
        if (heapProfiler)
            heapProfiler->_generateServerStatusSection(builder);
    }
};

//
// serverStatus section
//

class HeapProfilerServerStatusSection final : public ServerStatusSection {
public:
    HeapProfilerServerStatusSection() : ServerStatusSection("heapProfile") {}

    bool includeByDefault() const override {
        return HeapProfiler::enabledParameter;
    }

    BSONObj generateSection(OperationContext* txn,
                            const BSONElement& configElement) const override {
        BSONObjBuilder builder;
        HeapProfiler::generateServerStatusSection(builder);
        return builder.obj();
    }
} heapProfilerServerStatusSection;

//
// startup
//

HeapProfiler* HeapProfiler::heapProfiler;
bool HeapProfiler::enabledParameter = false;
long long HeapProfiler::sampleIntervalBytesParameter = 256 * 1024;

ExportedServerParameter<bool, ServerParameterType::kStartupOnly> heapProfilingEnabledParameter(
    ServerParameterSet::getGlobal(), "heapProfilingEnabled", &HeapProfiler::enabledParameter);

ExportedServerParameter<long long, ServerParameterType::kStartupOnly>
    heapProfilingSampleIntervalBytes(ServerParameterSet::getGlobal(),
                                     "heapProfilingSampleIntervalBytes",
                                     &HeapProfiler::sampleIntervalBytesParameter);

MONGO_INITIALIZER_GENERAL(StartHeapProfiling, ("EndStartupOptionHandling"), ("default"))
(InitializerContext* context) {
    if (HeapProfiler::enabledParameter)
        HeapProfiler::heapProfiler = new HeapProfiler();
    return Status::OK();
}

}  // namespace
}  // namespace mongo

#endif  // MONGO_HAVE_HEAP_PROFILER