summaryrefslogtreecommitdiff
path: root/src/third_party/s2/s2cap_test.cc
blob: eb6abd1d1fc2af16c8fcd5b029acf0ec74ada937 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
// Copyright 2005 Google Inc. All Rights Reserved.

#include "s2cap.h"

#include "base/commandlineflags.h"
#include "base/logging.h"
#include "testing/base/public/gunit.h"
#include "s2.h"
#include "s2cell.h"
#include "s2latlng.h"
#include "s2latlngrect.h"

static S2Point GetLatLngPoint(double lat_degrees, double lng_degrees) {
  return S2LatLng::FromDegrees(lat_degrees, lng_degrees).ToPoint();
}

// About 9 times the double-precision roundoff relative error.
static const double kEps = 1e-15;

TEST(S2Cap, Basic) {
  // Test basic properties of empty and full caps.
  S2Cap empty = S2Cap::Empty();
  S2Cap full = S2Cap::Full();
  EXPECT_TRUE(empty.is_valid());
  EXPECT_TRUE(empty.is_empty());
  EXPECT_TRUE(empty.Complement().is_full());
  EXPECT_TRUE(full.is_valid());
  EXPECT_TRUE(full.is_full());
  EXPECT_TRUE(full.Complement().is_empty());
  EXPECT_EQ(2, full.height());
  EXPECT_DOUBLE_EQ(180.0, full.angle().degrees());

  // Check that the default S2Cap is identical to Empty().
  S2Cap default_empty;
  EXPECT_TRUE(default_empty.is_valid());
  EXPECT_TRUE(default_empty.is_empty());
  EXPECT_EQ(empty.axis(), default_empty.axis());
  EXPECT_EQ(empty.height(), default_empty.height());

  // Containment and intersection of empty and full caps.
  EXPECT_TRUE(empty.Contains(empty));
  EXPECT_TRUE(full.Contains(empty));
  EXPECT_TRUE(full.Contains(full));
  EXPECT_FALSE(empty.InteriorIntersects(empty));
  EXPECT_TRUE(full.InteriorIntersects(full));
  EXPECT_FALSE(full.InteriorIntersects(empty));

  // Singleton cap containing the x-axis.
  S2Cap xaxis = S2Cap::FromAxisHeight(S2Point(1, 0, 0), 0);
  EXPECT_TRUE(xaxis.Contains(S2Point(1, 0, 0)));
  EXPECT_TRUE(xaxis.VirtualContainsPoint(S2Point(1, 0, 0)));
  EXPECT_FALSE(xaxis.Contains(S2Point(1, 1e-20, 0)));
  EXPECT_FALSE(xaxis.VirtualContainsPoint(S2Point(1, 1e-20, 0)));
  EXPECT_EQ(0, xaxis.angle().radians());

  // Singleton cap containing the y-axis.
  S2Cap yaxis = S2Cap::FromAxisAngle(S2Point(0, 1, 0), S1Angle::Radians(0));
  EXPECT_FALSE(yaxis.Contains(xaxis.axis()));
  EXPECT_EQ(0, xaxis.height());

  // Check that the complement of a singleton cap is the full cap.
  S2Cap xcomp = xaxis.Complement();
  EXPECT_TRUE(xcomp.is_valid());
  EXPECT_TRUE(xcomp.is_full());
  EXPECT_TRUE(xcomp.Contains(xaxis.axis()));

  // Check that the complement of the complement is *not* the original.
  EXPECT_TRUE(xcomp.Complement().is_valid());
  EXPECT_TRUE(xcomp.Complement().is_empty());
  EXPECT_FALSE(xcomp.Complement().Contains(xaxis.axis()));

  // Check that very small caps can be represented accurately.
  // Here "kTinyRad" is small enough that unit vectors perturbed by this
  // amount along a tangent do not need to be renormalized.
  static const double kTinyRad = 1e-10;
  S2Cap tiny = S2Cap::FromAxisAngle(S2Point(1, 2, 3).Normalize(),
                                    S1Angle::Radians(kTinyRad));
  S2Point tangent = tiny.axis().CrossProd(S2Point(3, 2, 1)).Normalize();
  EXPECT_TRUE(tiny.Contains(tiny.axis() + 0.99 * kTinyRad * tangent));
  EXPECT_FALSE(tiny.Contains(tiny.axis() + 1.01 * kTinyRad * tangent));

  // Basic tests on a hemispherical cap.
  S2Cap hemi = S2Cap::FromAxisHeight(S2Point(1, 0, 1).Normalize(), 1);
  EXPECT_EQ(-hemi.axis(), S2Point(hemi.Complement().axis()));
  EXPECT_EQ(1, hemi.Complement().height());
  EXPECT_TRUE(hemi.Contains(S2Point(1, 0, 0)));
  EXPECT_FALSE(hemi.Complement().Contains(S2Point(1, 0, 0)));
  EXPECT_TRUE(hemi.Contains(S2Point(1, 0, -(1-kEps)).Normalize()));
  EXPECT_FALSE(hemi.InteriorContains(S2Point(1, 0, -(1+kEps)).Normalize()));

  // A concave cap.
  S2Cap concave = S2Cap::FromAxisAngle(GetLatLngPoint(80, 10),
                                       S1Angle::Degrees(150));
  EXPECT_TRUE(concave.Contains(GetLatLngPoint(-70 * (1 - kEps), 10)));
  EXPECT_FALSE(concave.Contains(GetLatLngPoint(-70 * (1 + kEps), 10)));
  EXPECT_TRUE(concave.Contains(GetLatLngPoint(-50 * (1 - kEps), -170)));
  EXPECT_FALSE(concave.Contains(GetLatLngPoint(-50 * (1 + kEps), -170)));

  // Cap containment tests.
  EXPECT_FALSE(empty.Contains(xaxis));
  EXPECT_FALSE(empty.InteriorIntersects(xaxis));
  EXPECT_TRUE(full.Contains(xaxis));
  EXPECT_TRUE(full.InteriorIntersects(xaxis));
  EXPECT_FALSE(xaxis.Contains(full));
  EXPECT_FALSE(xaxis.InteriorIntersects(full));
  EXPECT_TRUE(xaxis.Contains(xaxis));
  EXPECT_FALSE(xaxis.InteriorIntersects(xaxis));
  EXPECT_TRUE(xaxis.Contains(empty));
  EXPECT_FALSE(xaxis.InteriorIntersects(empty));
  EXPECT_TRUE(hemi.Contains(tiny));
  EXPECT_TRUE(hemi.Contains(
                  S2Cap::FromAxisAngle(S2Point(1, 0, 0),
                                       S1Angle::Radians(M_PI_4 - kEps))));
  EXPECT_FALSE(hemi.Contains(
                   S2Cap::FromAxisAngle(S2Point(1, 0, 0),
                                        S1Angle::Radians(M_PI_4 + kEps))));
  EXPECT_TRUE(concave.Contains(hemi));
  EXPECT_TRUE(concave.InteriorIntersects(hemi.Complement()));
  EXPECT_FALSE(concave.Contains(S2Cap::FromAxisHeight(-concave.axis(), 0.1)));
}

TEST(S2Cap, GetRectBound) {
  // Empty and full caps.
  EXPECT_TRUE(S2Cap::Empty().GetRectBound().is_empty());
  EXPECT_TRUE(S2Cap::Full().GetRectBound().is_full());

  static const double kDegreeEps = 1e-13;
  // Maximum allowable error for latitudes and longitudes measured in
  // degrees.  (EXPECT_DOUBLE_EQ isn't sufficient.)

  // Cap that includes the south pole.
  S2LatLngRect rect = S2Cap::FromAxisAngle(GetLatLngPoint(-45, 57),
                                           S1Angle::Degrees(50)).GetRectBound();
  EXPECT_NEAR(rect.lat_lo().degrees(), -90, kDegreeEps);
  EXPECT_NEAR(rect.lat_hi().degrees(), 5, kDegreeEps);
  EXPECT_TRUE(rect.lng().is_full());

  // Cap that is tangent to the north pole.
  rect = S2Cap::FromAxisAngle(S2Point(1, 0, 1).Normalize(),
                              S1Angle::Radians(M_PI_4 + 1e-16)).GetRectBound();
  EXPECT_NEAR(rect.lat().lo(), 0, kEps);
  EXPECT_NEAR(rect.lat().hi(), M_PI_2, kEps);
  EXPECT_TRUE(rect.lng().is_full());

  rect = S2Cap::FromAxisAngle(S2Point(1, 0, 1).Normalize(),
                              S1Angle::Degrees(45 + 5e-15)).GetRectBound();
  EXPECT_NEAR(rect.lat_lo().degrees(), 0, kDegreeEps);
  EXPECT_NEAR(rect.lat_hi().degrees(), 90, kDegreeEps);
  EXPECT_TRUE(rect.lng().is_full());

  // The eastern hemisphere.
  rect = S2Cap::FromAxisAngle(S2Point(0, 1, 0),
                              S1Angle::Radians(M_PI_2 + 2e-16)).GetRectBound();
  EXPECT_NEAR(rect.lat_lo().degrees(), -90, kDegreeEps);
  EXPECT_NEAR(rect.lat_hi().degrees(), 90, kDegreeEps);
  EXPECT_TRUE(rect.lng().is_full());

  // A cap centered on the equator.
  rect = S2Cap::FromAxisAngle(GetLatLngPoint(0, 50),
                              S1Angle::Degrees(20)).GetRectBound();
  EXPECT_NEAR(rect.lat_lo().degrees(), -20, kDegreeEps);
  EXPECT_NEAR(rect.lat_hi().degrees(), 20, kDegreeEps);
  EXPECT_NEAR(rect.lng_lo().degrees(), 30, kDegreeEps);
  EXPECT_NEAR(rect.lng_hi().degrees(), 70, kDegreeEps);

  // A cap centered on the north pole.
  rect = S2Cap::FromAxisAngle(GetLatLngPoint(90, 123),
                              S1Angle::Degrees(10)).GetRectBound();
  EXPECT_NEAR(rect.lat_lo().degrees(), 80, kDegreeEps);
  EXPECT_NEAR(rect.lat_hi().degrees(), 90, kDegreeEps);
  EXPECT_TRUE(rect.lng().is_full());
}

TEST(S2Cap, S2CellMethods) {
  // For each cube face, we construct some cells on
  // that face and some caps whose positions are relative to that face,
  // and then check for the expected intersection/containment results.

  // The distance from the center of a face to one of its vertices.
  static const double kFaceRadius = atan(sqrt(2));

  for (int face = 0; face < 6; ++face) {
    // The cell consisting of the entire face.
    S2Cell root_cell = S2Cell::FromFacePosLevel(face, 0, 0);

    // A leaf cell at the midpoint of the v=1 edge.
    S2Cell edge_cell(S2::FaceUVtoXYZ(face, 0, 1 - kEps));

    // A leaf cell at the u=1, v=1 corner.
    S2Cell corner_cell(S2::FaceUVtoXYZ(face, 1 - kEps, 1 - kEps));

    // Quick check for full and empty caps.
    EXPECT_TRUE(S2Cap::Full().Contains(root_cell));
    EXPECT_FALSE(S2Cap::Empty().MayIntersect(root_cell));

    // Check intersections with the bounding caps of the leaf cells that are
    // adjacent to 'corner_cell' along the Hilbert curve.  Because this corner
    // is at (u=1,v=1), the curve stays locally within the same cube face.
    S2CellId first = corner_cell.id().advance(-3);
    S2CellId last = corner_cell.id().advance(4);
    for (S2CellId id = first; id < last; id = id.next()) {
      S2Cell cell(id);
      EXPECT_EQ(id == corner_cell.id(),
                cell.GetCapBound().Contains(corner_cell));
      EXPECT_EQ(id.parent().contains(corner_cell.id()),
                cell.GetCapBound().MayIntersect(corner_cell));
    }

    int anti_face = (face + 3) % 6;  // Opposite face.
    for (int cap_face = 0; cap_face < 6; ++cap_face) {
      // A cap that barely contains all of 'cap_face'.
      S2Point center = S2::GetNorm(cap_face);
      S2Cap covering = S2Cap::FromAxisAngle(
          center, S1Angle::Radians(kFaceRadius + kEps));
      EXPECT_EQ(cap_face == face, covering.Contains(root_cell));
      EXPECT_EQ(cap_face != anti_face, covering.MayIntersect(root_cell));
      EXPECT_EQ(center.DotProd(edge_cell.GetCenter()) > 0.1,
                covering.Contains(edge_cell));
      EXPECT_EQ(covering.MayIntersect(edge_cell), covering.Contains(edge_cell));
      EXPECT_EQ(cap_face == face, covering.Contains(corner_cell));
      EXPECT_EQ(center.DotProd(corner_cell.GetCenter()) > 0,
                covering.MayIntersect(corner_cell));

      // A cap that barely intersects the edges of 'cap_face'.
      S2Cap bulging = S2Cap::FromAxisAngle(
          center, S1Angle::Radians(M_PI_4 + kEps));
      EXPECT_FALSE(bulging.Contains(root_cell));
      EXPECT_EQ(cap_face != anti_face, bulging.MayIntersect(root_cell));
      EXPECT_EQ(cap_face == face, bulging.Contains(edge_cell));
      EXPECT_EQ(center.DotProd(edge_cell.GetCenter()) > 0.1,
                bulging.MayIntersect(edge_cell));
      EXPECT_FALSE(bulging.Contains(corner_cell));
      EXPECT_FALSE(bulging.MayIntersect(corner_cell));

      // A singleton cap.
      S2Cap singleton = S2Cap::FromAxisAngle(center, S1Angle::Radians(0));
      EXPECT_EQ(cap_face == face, singleton.MayIntersect(root_cell));
      EXPECT_FALSE(singleton.MayIntersect(edge_cell));
      EXPECT_FALSE(singleton.MayIntersect(corner_cell));
    }
  }
}

TEST(S2Cap, Expanded) {
  EXPECT_TRUE(S2Cap::Empty().Expanded(S1Angle::Radians(2)).is_empty());
  EXPECT_TRUE(S2Cap::Full().Expanded(S1Angle::Radians(2)).is_full());
  S2Cap cap50 = S2Cap::FromAxisAngle(S2Point(1, 0, 0), S1Angle::Degrees(50));
  S2Cap cap51 = S2Cap::FromAxisAngle(S2Point(1, 0, 0), S1Angle::Degrees(51));
  EXPECT_TRUE(cap50.Expanded(S1Angle::Radians(0)).ApproxEquals(cap50));
  EXPECT_TRUE(cap50.Expanded(S1Angle::Degrees(1)).ApproxEquals(cap51));
  EXPECT_FALSE(cap50.Expanded(S1Angle::Degrees(129.99)).is_full());
  EXPECT_TRUE(cap50.Expanded(S1Angle::Degrees(130.01)).is_full());
}