summaryrefslogtreecommitdiff
path: root/src/third_party/s2/s2latlngrect_test.cc
blob: 33408944a00cbf3e9ff8bcfa4a3a293f4cac8db8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
// Copyright 2005 Google Inc. All Rights Reserved.
//
// Most of the S2LatLngRect methods have trivial implementations that
// use the R1Interval and S1Interval classes, so most of the testing
// is done in those unit tests.

#include "s2latlngrect.h"
#include "util/coding/coder.h"
#include "s2edgeutil.h"
#include "s2cap.h"
#include "s2cell.h"
#include "s2testing.h"
#include "testing/base/public/gunit.h"

static S2LatLngRect RectFromDegrees(double lat_lo, double lng_lo,
                                    double lat_hi, double lng_hi) {
  // Convenience method to construct a rectangle.  This method is
  // intentionally *not* in the S2LatLngRect interface because the
  // argument order is ambiguous, but hopefully it's not too confusing
  // within the context of this unit test.

  return S2LatLngRect(S2LatLng::FromDegrees(lat_lo, lng_lo).Normalized(),
                      S2LatLng::FromDegrees(lat_hi, lng_hi).Normalized());
}

TEST(S2LatLngRect, EmptyAndFull) {
  // Test basic properties of empty and full rectangles.
  S2LatLngRect empty = S2LatLngRect::Empty();
  S2LatLngRect full = S2LatLngRect::Full();
  EXPECT_TRUE(empty.is_valid());
  EXPECT_TRUE(empty.is_empty());
  EXPECT_FALSE(empty.is_point());
  EXPECT_TRUE(full.is_valid());
  EXPECT_TRUE(full.is_full());
  EXPECT_FALSE(full.is_point());
  // Check that the default S2LatLngRect is identical to Empty().
  S2LatLngRect default_empty;
  EXPECT_TRUE(default_empty.is_valid());
  EXPECT_TRUE(default_empty.is_empty());
  EXPECT_EQ(empty.lat().bounds(), default_empty.lat().bounds());
  EXPECT_EQ(empty.lng().bounds(), default_empty.lng().bounds());
}

TEST(S2LatLngRect, Accessors) {
  // Check various accessor methods.
  S2LatLngRect d1 = RectFromDegrees(-90, 0, -45, 180);
  EXPECT_DOUBLE_EQ(d1.lat_lo().degrees(), -90);
  EXPECT_DOUBLE_EQ(d1.lat_hi().degrees(), -45);
  EXPECT_DOUBLE_EQ(d1.lng_lo().degrees(), 0);
  EXPECT_DOUBLE_EQ(d1.lng_hi().degrees(), 180);
  EXPECT_EQ(d1.lat(), R1Interval(-M_PI_2, -M_PI_4));
  EXPECT_EQ(d1.lng(), S1Interval(0, M_PI));
}

TEST(S2LatLngRect, FromCenterSize) {
  EXPECT_TRUE(S2LatLngRect::FromCenterSize(S2LatLng::FromDegrees(80, 170),
                                           S2LatLng::FromDegrees(40, 60)).
              ApproxEquals(RectFromDegrees(60, 140, 90, -160)));
  EXPECT_TRUE(S2LatLngRect::FromCenterSize(S2LatLng::FromDegrees(10, 40),
                                           S2LatLng::FromDegrees(210, 400)).
              is_full());
  EXPECT_TRUE(S2LatLngRect::FromCenterSize(S2LatLng::FromDegrees(-90, 180),
                                           S2LatLng::FromDegrees(20, 50)).
              ApproxEquals(RectFromDegrees(-90, 155, -80, -155)));
}

TEST(S2LatLngRect, FromPoint) {
  S2LatLng p = S2LatLng::FromDegrees(23, 47);
  EXPECT_EQ(S2LatLngRect::FromPoint(p), S2LatLngRect(p, p));
  EXPECT_TRUE(S2LatLngRect::FromPoint(p).is_point());
}

TEST(S2LatLngRect, FromPointPair) {
  EXPECT_EQ(S2LatLngRect::FromPointPair(S2LatLng::FromDegrees(-35, -140),
                                        S2LatLng::FromDegrees(15, 155)),
            RectFromDegrees(-35, 155, 15, -140));
  EXPECT_EQ(S2LatLngRect::FromPointPair(S2LatLng::FromDegrees(25, -70),
                                        S2LatLng::FromDegrees(-90, 80)),
            RectFromDegrees(-90, -70, 25, 80));
}

TEST(S2LatLngRect, GetCenterSize) {
  S2LatLngRect r1(R1Interval(0, M_PI_2), S1Interval(-M_PI, 0));
  EXPECT_EQ(r1.GetCenter(), S2LatLng::FromRadians(M_PI_4, -M_PI_2));
  EXPECT_EQ(r1.GetSize(), S2LatLng::FromRadians(M_PI_2, M_PI));
  EXPECT_LT(S2LatLngRect::Empty().GetSize().lat().radians(), 0);
  EXPECT_LT(S2LatLngRect::Empty().GetSize().lng().radians(), 0);
}

TEST(S2LatLngRect, GetVertex) {
  S2LatLngRect r1(R1Interval(0, M_PI_2), S1Interval(-M_PI, 0));
  EXPECT_EQ(r1.GetVertex(0), S2LatLng::FromRadians(0, M_PI));
  EXPECT_EQ(r1.GetVertex(1), S2LatLng::FromRadians(0, 0));
  EXPECT_EQ(r1.GetVertex(2), S2LatLng::FromRadians(M_PI_2, 0));
  EXPECT_EQ(r1.GetVertex(3), S2LatLng::FromRadians(M_PI_2, M_PI));

  // Make sure that GetVertex() returns vertices in CCW order.
  for (int i = 0; i < 4; ++i) {
    double lat = M_PI_4 * (i - 2);
    double lng = M_PI_2 * (i - 2) + 0.2;
    S2LatLngRect r(R1Interval(lat, lat + M_PI_4),
                   S1Interval(drem(lng, 2*M_PI), drem(lng + M_PI_2, 2*M_PI)));
    for (int k = 0; k < 4; ++k) {
      EXPECT_TRUE(S2::SimpleCCW(r.GetVertex((k - 1) & 3).ToPoint(),
                                r.GetVertex(k).ToPoint(),
                                r.GetVertex((k + 1) & 3).ToPoint()));
    }
  }
}

TEST(S2LatLngRect, Contains) {
  // Contains(S2LatLng), InteriorContains(S2LatLng), VirtualContainsPoint()
  S2LatLng eq_m180 = S2LatLng::FromRadians(0, -M_PI);
  S2LatLng north_pole = S2LatLng::FromRadians(M_PI_2, 0);
  S2LatLngRect r1(eq_m180, north_pole);

  EXPECT_TRUE(r1.Contains(S2LatLng::FromDegrees(30, -45)));
  EXPECT_TRUE(r1.InteriorContains(S2LatLng::FromDegrees(30, -45)));
  EXPECT_FALSE(r1.Contains(S2LatLng::FromDegrees(30, 45)));
  EXPECT_FALSE(r1.InteriorContains(S2LatLng::FromDegrees(30, 45)));
  EXPECT_TRUE(r1.Contains(eq_m180));
  EXPECT_FALSE(r1.InteriorContains(eq_m180));
  EXPECT_TRUE(r1.Contains(north_pole));
  EXPECT_FALSE(r1.InteriorContains(north_pole));
  EXPECT_TRUE(r1.Contains(S2Point(0.5, -0.3, 0.1)));
  EXPECT_TRUE(r1.VirtualContainsPoint(S2Point(0.5, -0.3, 0.1)));
  EXPECT_FALSE(r1.Contains(S2Point(0.5, 0.2, 0.1)));
  EXPECT_FALSE(r1.VirtualContainsPoint(S2Point(0.5, 0.2, 0.1)));
}

static void TestIntervalOps(S2LatLngRect const& x, S2LatLngRect const& y,
                            const char* expected_relation,
                            S2LatLngRect const& expected_union,
                            S2LatLngRect const& expected_intersection) {
  // Test all of the interval operations on the given pair of intervals.
  // "expected_relation" is a sequence of "T" and "F" characters corresponding
  // to the expected results of Contains(), InteriorContains(), Intersects(),
  // and InteriorIntersects() respectively.

  EXPECT_EQ(x.Contains(y), expected_relation[0] == 'T');
  EXPECT_EQ(x.InteriorContains(y), expected_relation[1] == 'T');
  EXPECT_EQ(x.Intersects(y), expected_relation[2] == 'T');
  EXPECT_EQ(x.InteriorIntersects(y), expected_relation[3] == 'T');

  EXPECT_EQ(x.Contains(y), x.Union(y) == x);
  EXPECT_EQ(x.Intersects(y), !x.Intersection(y).is_empty());

  EXPECT_EQ(x.Union(y), expected_union);
  EXPECT_EQ(x.Intersection(y), expected_intersection);

  if (y.GetSize() == S2LatLng::FromRadians(0, 0)) {
    S2LatLngRect r = x;
    r.AddPoint(y.lo());
    EXPECT_EQ(r, expected_union);
  }
}

TEST(S2LatLngRect, IntervalOps) {
  // Contains(S2LatLngRect), InteriorContains(S2LatLngRect),
  // Intersects(), InteriorIntersects(), Union(), Intersection().
  //
  // Much more testing of these methods is done in s1interval_unittest
  // and r1interval_unittest.

  // Rectangle "r1" covers one-quarter of the sphere.
  S2LatLngRect r1 = RectFromDegrees(0, -180, 90, 0);

  // Test operations where one rectangle consists of a single point.
  S2LatLngRect r1_mid = RectFromDegrees(45, -90, 45, -90);
  TestIntervalOps(r1, r1_mid, "TTTT", r1, r1_mid);

  S2LatLngRect req_m180 = RectFromDegrees(0, -180, 0, -180);
  TestIntervalOps(r1, req_m180, "TFTF", r1, req_m180);

  S2LatLngRect rnorth_pole = RectFromDegrees(90, 0, 90, 0);
  TestIntervalOps(r1, rnorth_pole, "TFTF", r1, rnorth_pole);

  TestIntervalOps(r1, RectFromDegrees(-10, -1, 1, 20), "FFTT",
                  RectFromDegrees(-10, 180, 90, 20),
                  RectFromDegrees(0, -1, 1, 0));
  TestIntervalOps(r1, RectFromDegrees(-10, -1, 0, 20), "FFTF",
                  RectFromDegrees(-10, 180, 90, 20),
                  RectFromDegrees(0, -1, 0, 0));
  TestIntervalOps(r1, RectFromDegrees(-10, 0, 1, 20), "FFTF",
                  RectFromDegrees(-10, 180, 90, 20),
                  RectFromDegrees(0, 0, 1, 0));

  TestIntervalOps(RectFromDegrees(-15, -160, -15, -150),
                  RectFromDegrees(20, 145, 25, 155), "FFFF",
                  RectFromDegrees(-15, 145, 25, -150),
                  S2LatLngRect::Empty());
  TestIntervalOps(RectFromDegrees(70, -10, 90, -140),
                  RectFromDegrees(60, 175, 80, 5), "FFTT",
                  RectFromDegrees(60, -180, 90, 180),
                  RectFromDegrees(70, 175, 80, 5));

  // Check that the intersection of two rectangles that overlap in latitude
  // but not longitude is valid, and vice versa.
  TestIntervalOps(RectFromDegrees(12, 30, 60, 60),
                  RectFromDegrees(0, 0, 30, 18), "FFFF",
                  RectFromDegrees(0, 0, 60, 60), S2LatLngRect::Empty());
  TestIntervalOps(RectFromDegrees(0, 0, 18, 42),
                  RectFromDegrees(30, 12, 42, 60), "FFFF",
                  RectFromDegrees(0, 0, 42, 60), S2LatLngRect::Empty());
}

TEST(S2LatLngRect, AddPoint) {
  S2LatLngRect p = S2LatLngRect::Empty();
  p.AddPoint(S2LatLng::FromDegrees(0, 0));
  EXPECT_TRUE(p.is_point());
  p.AddPoint(S2LatLng::FromRadians(0, -M_PI_2));
  EXPECT_FALSE(p.is_point());
  p.AddPoint(S2LatLng::FromRadians(M_PI_4, -M_PI));
  p.AddPoint(S2Point(0, 0, 1));
  EXPECT_EQ(p, RectFromDegrees(0, -180, 90, 0));
}

TEST(S2LatLngRect, Expanded) {
  EXPECT_TRUE(RectFromDegrees(70, 150, 80, 170).
              Expanded(S2LatLng::FromDegrees(20, 30)).
              ApproxEquals(RectFromDegrees(50, 120, 90, -160)));
  EXPECT_TRUE(S2LatLngRect::Empty().Expanded(S2LatLng::FromDegrees(20, 30)).
              is_empty());
  EXPECT_TRUE(S2LatLngRect::Full().Expanded(S2LatLng::FromDegrees(20, 30)).
              is_full());
  EXPECT_TRUE(RectFromDegrees(-90, 170, 10, 20).
              Expanded(S2LatLng::FromDegrees(30, 80)).
              ApproxEquals(RectFromDegrees(-90, -180, 40, 180)));
}

TEST(S2LatLngRect, ConvolveWithCap) {
  EXPECT_TRUE(RectFromDegrees(0, 170, 0, -170).
              ConvolveWithCap(S1Angle::Degrees(15)).ApproxEquals(
                  RectFromDegrees(-15, 155, 15, -155)));
  EXPECT_TRUE(RectFromDegrees(60, 150, 80, 10).
              ConvolveWithCap(S1Angle::Degrees(15)).ApproxEquals(
                  RectFromDegrees(45, -180, 90, 180)));
}

TEST(S2LatLngRect, GetCapBound) {
  // Bounding cap at center is smaller:
  EXPECT_TRUE(RectFromDegrees(-45, -45, 45, 45).GetCapBound().
              ApproxEquals(S2Cap::FromAxisHeight(S2Point(1, 0, 0), 0.5)));

  // Bounding cap at north pole is smaller:
  EXPECT_TRUE(RectFromDegrees(88, -80, 89, 80).GetCapBound().
              ApproxEquals(S2Cap::FromAxisAngle(S2Point(0, 0, 1),
                                                S1Angle::Degrees(2))));

  // Longitude span > 180 degrees:
  EXPECT_TRUE(RectFromDegrees(-30, -150, -10, 50).GetCapBound().
              ApproxEquals(S2Cap::FromAxisAngle(S2Point(0, 0, -1),
                                                S1Angle::Degrees(80))));
}

static void TestCellOps(S2LatLngRect const& r, S2Cell const& cell,
                        int level) {
  // Test the relationship between the given rectangle and cell:
  // 0 == no intersection, 1 == MayIntersect, 2 == Intersects,
  // 3 == Vertex Containment, 4 == Contains

  bool vertex_contained = false;
  for (int i = 0; i < 4; ++i) {
    if (r.Contains(cell.GetVertexRaw(i)) ||
        (!r.is_empty() && cell.Contains(r.GetVertex(i).ToPoint())))
      vertex_contained = true;
  }
  EXPECT_EQ(r.MayIntersect(cell), level >= 1);
  EXPECT_EQ(r.Intersects(cell), level >= 2);
  EXPECT_EQ(vertex_contained, level >= 3);
  EXPECT_EQ(r.Contains(cell), level >= 4);
}

TEST(S2LatLngRect, CellOps) {
  // Contains(S2Cell), MayIntersect(S2Cell), Intersects(S2Cell)

  // Special cases.
  TestCellOps(S2LatLngRect::Empty(), S2Cell::FromFacePosLevel(3, 0, 0), 0);
  TestCellOps(S2LatLngRect::Full(), S2Cell::FromFacePosLevel(2, 0, 0), 4);
  TestCellOps(S2LatLngRect::Full(), S2Cell::FromFacePosLevel(5, 0, 25), 4);

  // This rectangle includes the first quadrant of face 0.  It's expanded
  // slightly because cell bounding rectangles are slightly conservative.
  S2LatLngRect r4 = RectFromDegrees(-45.1, -45.1, 0.1, 0.1);
  TestCellOps(r4, S2Cell::FromFacePosLevel(0, 0, 0), 3);
  TestCellOps(r4, S2Cell::FromFacePosLevel(0, 0, 1), 4);
  TestCellOps(r4, S2Cell::FromFacePosLevel(1, 0, 1), 0);

  // This rectangle intersects the first quadrant of face 0.
  S2LatLngRect r5 = RectFromDegrees(-10, -45, 10, 0);
  TestCellOps(r5, S2Cell::FromFacePosLevel(0, 0, 0), 3);
  TestCellOps(r5, S2Cell::FromFacePosLevel(0, 0, 1), 3);
  TestCellOps(r5, S2Cell::FromFacePosLevel(1, 0, 1), 0);

  // Rectangle consisting of a single point.
  TestCellOps(RectFromDegrees(4, 4, 4, 4),
              S2Cell::FromFacePosLevel(0, 0, 0), 3);

  // Rectangles that intersect the bounding rectangle of a face
  // but not the face itself.
  TestCellOps(RectFromDegrees(41, -87, 42, -79),
              S2Cell::FromFacePosLevel(2, 0, 0), 1);
  TestCellOps(RectFromDegrees(-41, 160, -40, -160),
              S2Cell::FromFacePosLevel(5, 0, 0), 1);

  // This is the leaf cell at the top right hand corner of face 0.
  // It has two angles of 60 degrees and two of 120 degrees.
  S2Cell cell0tr(S2Point(1 + 1e-12, 1, 1));
  S2LatLngRect bound0tr = cell0tr.GetRectBound();
  S2LatLng v0(cell0tr.GetVertexRaw(0));
  TestCellOps(RectFromDegrees(v0.lat().degrees() - 1e-8,
                              v0.lng().degrees() - 1e-8,
                              v0.lat().degrees() - 2e-10,
                              v0.lng().degrees() + 1e-10),
              cell0tr, 1);

  // Rectangles that intersect a face but where no vertex of one region
  // is contained by the other region.  The first one passes through
  // a corner of one of the face cells.
  TestCellOps(RectFromDegrees(-37, -70, -36, -20),
              S2Cell::FromFacePosLevel(5, 0, 0), 2);

  // These two intersect like a diamond and a square.
  S2Cell cell202 = S2Cell::FromFacePosLevel(2, 0, 2);
  S2LatLngRect bound202 = cell202.GetRectBound();
  TestCellOps(RectFromDegrees(bound202.lo().lat().degrees() + 3,
                              bound202.lo().lng().degrees() + 3,
                              bound202.hi().lat().degrees() - 3,
                              bound202.hi().lng().degrees() - 3),
              cell202, 2);
}

TEST(S2LatLngRect, EncodeDecode) {
  S2LatLngRect r = RectFromDegrees(-20, -80, 10, 20);
  Encoder encoder;
  r.Encode(&encoder);
  Decoder decoder(encoder.base(), encoder.length());
  S2LatLngRect decoded_rect = S2LatLngRect::Empty();
  EXPECT_TRUE(decoded_rect.Decode(&decoder));
  EXPECT_EQ(r, decoded_rect);
}

TEST(S2LatLngRect, Area) {
  EXPECT_EQ(S2LatLngRect::Empty().Area(), 0.0);
  EXPECT_DOUBLE_EQ(S2LatLngRect::Full().Area(), 4 * M_PI);
  EXPECT_DOUBLE_EQ(RectFromDegrees(0, 0, 90, 90).Area(), M_PI / 2);
}

// Returns the minimum distance from X to the latitude line segment defined by
// the given latitude and longitude interval.
S1Angle GetDistance(const S2LatLng& x,
                    const S1Angle& lat,
                    const S1Interval& interval) {
  EXPECT_TRUE(x.is_valid());
  EXPECT_TRUE(interval.is_valid());

  // Is X inside the longitude interval?
  if (interval.Contains(x.lng().radians()))
    return (x.lat() - lat).abs();

  // Return the distance to the closer endpoint.
  return min(x.GetDistance(S2LatLng(lat, S1Angle::Radians(interval.lo()))),
             x.GetDistance(S2LatLng(lat, S1Angle::Radians(interval.hi()))));
}

static S1Angle BruteForceDistance(const S2LatLngRect& a,
                                  const S2LatLngRect& b) {
  if (a.Intersects(b))
    return S1Angle::Radians(0);

  // Compare every point in 'a' against every latitude edge and longitude edge
  // in 'b', and vice-versa, for a total of 16 point-vs-latitude-edge tests and
  // 16 point-vs-longitude-edge tests.
  S2LatLng pnt_a[4], pnt_b[4];
  pnt_a[0] = S2LatLng(a.lat_lo(), a.lng_lo());
  pnt_a[1] = S2LatLng(a.lat_lo(), a.lng_hi());
  pnt_a[2] = S2LatLng(a.lat_hi(), a.lng_hi());
  pnt_a[3] = S2LatLng(a.lat_hi(), a.lng_lo());
  pnt_b[0] = S2LatLng(b.lat_lo(), b.lng_lo());
  pnt_b[1] = S2LatLng(b.lat_lo(), b.lng_hi());
  pnt_b[2] = S2LatLng(b.lat_hi(), b.lng_hi());
  pnt_b[3] = S2LatLng(b.lat_hi(), b.lng_lo());

  // Make arrays containing the lo/hi latitudes and the lo/hi longitude edges.
  S1Angle lat_a[2] = { a.lat_lo(), a.lat_hi() };
  S1Angle lat_b[2] = { b.lat_lo(), b.lat_hi() };
  S2Point lng_edge_a[2][2] = { { pnt_a[0].ToPoint(), pnt_a[3].ToPoint() },
                               { pnt_a[1].ToPoint(), pnt_a[2].ToPoint() } };
  S2Point lng_edge_b[2][2] = { { pnt_b[0].ToPoint(), pnt_b[3].ToPoint() },
                               { pnt_b[1].ToPoint(), pnt_b[2].ToPoint() } };

  S1Angle min_distance = S1Angle::Degrees(180.0);
  for (int i = 0; i < 4; ++i) {
    // For each point in a and b.
    const S2LatLng& current_a = pnt_a[i];
    const S2LatLng& current_b = pnt_b[i];

    for (int j = 0; j < 2; ++j) {
      // Get distances to latitude and longitude edges.
      S1Angle a_to_lat = GetDistance(current_a, lat_b[j], b.lng());
      S1Angle b_to_lat = GetDistance(current_b, lat_a[j], a.lng());
      S1Angle a_to_lng = S2EdgeUtil::GetDistance(
          current_a.ToPoint(), lng_edge_b[j][0], lng_edge_b[j][1]);
      S1Angle b_to_lng = S2EdgeUtil::GetDistance(
          current_b.ToPoint(), lng_edge_a[j][0], lng_edge_a[j][1]);

      min_distance = min(min_distance,
          min(a_to_lat, min(b_to_lat, min(a_to_lng, b_to_lng))));
    }
  }
  return min_distance;
}

static S1Angle BruteForceRectPointDistance(const S2LatLngRect& a,
                                           const S2LatLng& b) {
  if (a.Contains(b)) {
    return S1Angle::Radians(0);
  }

  S1Angle b_to_lo_lat = GetDistance(b, a.lat_lo(), a.lng());
  S1Angle b_to_hi_lat = GetDistance(b, a.lat_hi(), a.lng());
  S1Angle b_to_lo_lng = S2EdgeUtil::GetDistance(
      b.ToPoint(),
      S2LatLng(a.lat_lo(), a.lng_lo()).ToPoint(),
      S2LatLng(a.lat_hi(), a.lng_lo()).ToPoint());
  S1Angle b_to_hi_lng = S2EdgeUtil::GetDistance(
      b.ToPoint(),
      S2LatLng(a.lat_lo(), a.lng_hi()).ToPoint(),
      S2LatLng(a.lat_hi(), a.lng_hi()).ToPoint());
  return min(b_to_lo_lat, min(b_to_hi_lat, min(b_to_lo_lng, b_to_hi_lng)));
}

// This method verifies a.GetDistance(b) by comparing its result against a
// brute-force implementation. The correctness of the brute-force version is
// much easier to verify by inspection.
static void VerifyGetDistance(const S2LatLngRect& a, const S2LatLngRect& b) {
  S1Angle distance1 = BruteForceDistance(a, b);
  S1Angle distance2 = a.GetDistance(b);
  EXPECT_NEAR(distance1.radians() - distance2.radians(), 0, 1e-10)
      << a << ":" << b;
}

static S2LatLngRect PointRectFromDegrees(double lat, double lng) {
  return S2LatLngRect::FromPoint(
      S2LatLng::FromDegrees(lat, lng).Normalized());
}

// This method verifies a.GetDistance(b), where b is a S2LatLng, by comparing
// its result against a.GetDistance(c), c being the point rectangle created
// from b.
static void VerifyGetRectPointDistance(
    const S2LatLngRect& a, const S2LatLng& p) {
  S1Angle distance1 = BruteForceRectPointDistance(a, p.Normalized());
  S1Angle distance2 = a.GetDistance(p.Normalized());
  EXPECT_NEAR(fabs(distance1.radians() - distance2.radians()), 0, 1e-10)
      << a << ":" << p;
}

TEST(S2LatLngRect, GetDistanceOverlapping) {
  // Check pairs of rectangles that overlap: (should all return 0):
  S2LatLngRect a = RectFromDegrees(0, 0, 2, 2);
  S2LatLngRect b = PointRectFromDegrees(0, 0);
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(a));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(b));
  EXPECT_EQ(S1Angle::Radians(0), b.GetDistance(b));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(S2LatLng::FromDegrees(0, 0)));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(RectFromDegrees(0, 1, 2, 3)));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(RectFromDegrees(0, 2, 2, 4)));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(RectFromDegrees(1, 0, 3, 2)));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(RectFromDegrees(2, 0, 4, 2)));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(RectFromDegrees(1, 1, 3, 3)));
  EXPECT_EQ(S1Angle::Radians(0), a.GetDistance(RectFromDegrees(2, 2, 4, 4)));
}

TEST(S2LatLngRect, GetDistanceRectVsPoint) {
  // Rect that spans 180.
  S2LatLngRect a = RectFromDegrees(-1, -1, 2, 1);
  VerifyGetDistance(a, PointRectFromDegrees(-2, -1));
  VerifyGetDistance(a, PointRectFromDegrees(1, 2));

  VerifyGetDistance(PointRectFromDegrees(-2, -1), a);
  VerifyGetDistance(PointRectFromDegrees(1, 2), a);

  VerifyGetRectPointDistance(a, S2LatLng::FromDegrees(-2, -1));
  VerifyGetRectPointDistance(a, S2LatLng::FromDegrees(1, 2));

  // Tests near the north pole.
  S2LatLngRect b = RectFromDegrees(86, 0, 88, 2);
  VerifyGetDistance(b, PointRectFromDegrees(87, 3));
  VerifyGetDistance(b, PointRectFromDegrees(87, -1));
  VerifyGetDistance(b, PointRectFromDegrees(89, 1));
  VerifyGetDistance(b, PointRectFromDegrees(89, 181));
  VerifyGetDistance(b, PointRectFromDegrees(85, 1));
  VerifyGetDistance(b, PointRectFromDegrees(85, 181));
  VerifyGetDistance(b, PointRectFromDegrees(90, 0));

  VerifyGetDistance(PointRectFromDegrees(87, 3), b);
  VerifyGetDistance(PointRectFromDegrees(87, -1), b);
  VerifyGetDistance(PointRectFromDegrees(89, 1), b);
  VerifyGetDistance(PointRectFromDegrees(89, 181), b);
  VerifyGetDistance(PointRectFromDegrees(85, 1), b);
  VerifyGetDistance(PointRectFromDegrees(85, 181), b);
  VerifyGetDistance(PointRectFromDegrees(90, 0), b);

  VerifyGetRectPointDistance(b, S2LatLng::FromDegrees(87, 3));
  VerifyGetRectPointDistance(b, S2LatLng::FromDegrees(87, -1));
  VerifyGetRectPointDistance(b, S2LatLng::FromDegrees(89, 1));
  VerifyGetRectPointDistance(b, S2LatLng::FromDegrees(89, 181));
  VerifyGetRectPointDistance(b, S2LatLng::FromDegrees(85, 1));
  VerifyGetRectPointDistance(b, S2LatLng::FromDegrees(85, 181));
  VerifyGetRectPointDistance(b, S2LatLng::FromDegrees(90, 0));

  // Rect that touches the north pole.
  S2LatLngRect c = RectFromDegrees(88, 0, 90, 2);
  VerifyGetDistance(c, PointRectFromDegrees(89, 3));
  VerifyGetDistance(c, PointRectFromDegrees(89, 90));
  VerifyGetDistance(c, PointRectFromDegrees(89, 181));
  VerifyGetDistance(PointRectFromDegrees(89, 3), c);
  VerifyGetDistance(PointRectFromDegrees(89, 90), c);
  VerifyGetDistance(PointRectFromDegrees(89, 181), c);
}

TEST(S2LatLngRect, GetDistanceRectVsRect) {
  // Rect that spans 180.
  S2LatLngRect a = RectFromDegrees(-1, -1, 2, 1);
  VerifyGetDistance(a, RectFromDegrees(0, 2, 1, 3));
  VerifyGetDistance(a, RectFromDegrees(-2, -3, -1, -2));

  // Tests near the south pole.
  S2LatLngRect b = RectFromDegrees(-87, 0, -85, 3);
  VerifyGetDistance(b, RectFromDegrees(-89, 1, -88, 2));
  VerifyGetDistance(b, RectFromDegrees(-84, 1, -83, 2));
  VerifyGetDistance(b, RectFromDegrees(-88, 90, -86, 91));
  VerifyGetDistance(b, RectFromDegrees(-84, -91, -83, -90));
  VerifyGetDistance(b, RectFromDegrees(-90, 181, -89, 182));
  VerifyGetDistance(b, RectFromDegrees(-84, 181, -83, 182));
}

TEST(S2LatLngRect, GetDistanceRandomPairs) {
  // Test random pairs.
  for (int i = 0; i < 10000; ++i) {
    S2LatLngRect a =
        S2LatLngRect::FromPointPair(S2LatLng(S2Testing::RandomPoint()),
                                    S2LatLng(S2Testing::RandomPoint()));
    S2LatLngRect b =
        S2LatLngRect::FromPointPair(S2LatLng(S2Testing::RandomPoint()),
                                    S2LatLng(S2Testing::RandomPoint()));
    VerifyGetDistance(a, b);


    S2LatLng c(S2Testing::RandomPoint());
    VerifyGetRectPointDistance(a, c);
    VerifyGetRectPointDistance(b, c);
  }
}

// This function assumes that GetDirectedHausdorffDistance() always returns
// a distance from some point in a to b. So the function mainly tests whether
// the returned distance is large enough, and only does a weak test on whether
// it is small enough.
static void VerifyGetDirectedHausdorffDistance(const S2LatLngRect& a,
                                               const S2LatLngRect& b) {
  S1Angle hausdorff_distance = a.GetDirectedHausdorffDistance(b);

  static const double kResolution = 0.1;
  // Record the max sample distance as well as the sample point realizing the
  // max for easier debugging.
  S1Angle max_distance;
  double lat_max, lng_max;

  int sample_size_on_lat =
      static_cast<int>(a.lat().GetLength() / kResolution) + 1;
  int sample_size_on_lng =
      static_cast<int>(a.lng().GetLength() / kResolution) + 1;
  double delta_on_lat = a.lat().GetLength() / sample_size_on_lat;
  double delta_on_lng = a.lng().GetLength() / sample_size_on_lng;

  double lng = a.lng().lo();
  for (int i = 0; i <= sample_size_on_lng; ++i, lng += delta_on_lng) {
    double lat = a.lat().lo();
    for (int j = 0; j <= sample_size_on_lat; ++j, lat += delta_on_lat) {
      S2LatLng latlng = S2LatLng::FromRadians(lat, lng).Normalized();
      S1Angle distance_to_b = b.GetDistance(latlng);

      if (distance_to_b >= max_distance) {
        max_distance = distance_to_b;
        lat_max = lat;
        lng_max = lng;
      }
    }
  }

  EXPECT_LE(max_distance.radians(), hausdorff_distance.radians() + 1e-10)
      << a << ":" << b;
  EXPECT_GE(max_distance.radians(), hausdorff_distance.radians() - kResolution)
      << a << ":" << b;
}


TEST(S2LatLngRect, GetDirectedHausdorffDistanceRandomPairs) {
  // Test random pairs.
  for (int i = 0; i < 5000; ++i) {
    S2LatLngRect a =
        S2LatLngRect::FromPointPair(S2LatLng(S2Testing::RandomPoint()),
                                    S2LatLng(S2Testing::RandomPoint()));
    S2LatLngRect b =
        S2LatLngRect::FromPointPair(S2LatLng(S2Testing::RandomPoint()),
                                    S2LatLng(S2Testing::RandomPoint()));
    // a and b are *minimum* bounding rectangles of two random points, in
    // particular, their Voronoi diagrams are always of the same topology. We
    // take the "complements" of a and b for more thorough testing.
    S2LatLngRect a2(a.lat(), a.lng().Complement());
    S2LatLngRect b2(b.lat(), b.lng().Complement());

    VerifyGetDirectedHausdorffDistance(a, b);
    VerifyGetDirectedHausdorffDistance(b, a);

    VerifyGetDirectedHausdorffDistance(a, b2);
    VerifyGetDirectedHausdorffDistance(b2, a);

    VerifyGetDirectedHausdorffDistance(a2, b);
    VerifyGetDirectedHausdorffDistance(b, a2);

    VerifyGetDirectedHausdorffDistance(a2, b2);
    VerifyGetDirectedHausdorffDistance(b2, a2);
  }
}

TEST(S2LatLngRect, GetDirectedHausdorffDistanceContained) {
  // Caller rect is contained in callee rect. Should return 0.
  S2LatLngRect a = RectFromDegrees(-10, 20, -5, 90);
  EXPECT_EQ(S1Angle::Radians(0),
            a.GetDirectedHausdorffDistance(RectFromDegrees(-10, 20, -5, 90)));
  EXPECT_EQ(S1Angle::Radians(0),
            a.GetDirectedHausdorffDistance(RectFromDegrees(-10, 19, -5, 91)));
  EXPECT_EQ(S1Angle::Radians(0),
            a.GetDirectedHausdorffDistance(RectFromDegrees(-11, 20, -4, 90)));
  EXPECT_EQ(S1Angle::Radians(0),
            a.GetDirectedHausdorffDistance(RectFromDegrees(-11, 19, -4, 91)));
}

TEST(S2LatLngRect, GetDirectHausdorffDistancePointToRect) {
  // The Hausdorff distance from a point to a rect should be the same as its
  // distance to the rect.
  S2LatLngRect a1 = PointRectFromDegrees(5, 8);
  S2LatLngRect a2 = PointRectFromDegrees(90, 10);  // north pole

  S2LatLngRect b = RectFromDegrees(-85, -50, -80, 10);
  EXPECT_DOUBLE_EQ(a1.GetDirectedHausdorffDistance(b).radians(),
                   a1.GetDistance(b).radians());
  EXPECT_DOUBLE_EQ(a2.GetDirectedHausdorffDistance(b).radians(),
                   a2.GetDistance(b).radians());

  b = RectFromDegrees(4, -10, 80, 10);
  EXPECT_DOUBLE_EQ(a1.GetDirectedHausdorffDistance(b).radians(),
                   a1.GetDistance(b).radians());
  EXPECT_DOUBLE_EQ(a2.GetDirectedHausdorffDistance(b).radians(),
                   a2.GetDistance(b).radians());

  b = RectFromDegrees(70, 170, 80, -170);
  EXPECT_DOUBLE_EQ(a1.GetDirectedHausdorffDistance(b).radians(),
                   a1.GetDistance(b).radians());
  EXPECT_DOUBLE_EQ(a2.GetDirectedHausdorffDistance(b).radians(),
                   a2.GetDistance(b).radians());
}

TEST(S2LatLngRect, GetDirectedHausdorffDistanceRectToPoint) {
  S2LatLngRect a = RectFromDegrees(1, -8, 10, 20);
  VerifyGetDirectedHausdorffDistance(a, PointRectFromDegrees(5, 8));
  VerifyGetDirectedHausdorffDistance(a, PointRectFromDegrees(-6, -100));
  // south pole
  VerifyGetDirectedHausdorffDistance(a, PointRectFromDegrees(-90, -20));
  // north pole
  VerifyGetDirectedHausdorffDistance(a, PointRectFromDegrees(90, 0));
}

TEST(S2LatLngRect, GetDirectedHausdorffDistanceRectToRectNearPole) {
  // Tests near south pole.
  S2LatLngRect a = RectFromDegrees(-87, 0, -85, 3);
  VerifyGetDirectedHausdorffDistance(a, RectFromDegrees(-89, 1, -88, 2));
  VerifyGetDirectedHausdorffDistance(a, RectFromDegrees(-84, 1, -83, 2));
  VerifyGetDirectedHausdorffDistance(a, RectFromDegrees(-88, 90, -86, 91));
  VerifyGetDirectedHausdorffDistance(a, RectFromDegrees(-84, -91, -83, -90));
  VerifyGetDirectedHausdorffDistance(a, RectFromDegrees(-90, 181, -89, 182));
  VerifyGetDirectedHausdorffDistance(a, RectFromDegrees(-84, 181, -83, 182));
}

TEST(S2LatLngRect, GetDirectedHausdorffDistanceRectToRectDegenerateCases) {
  // Rectangles that contain poles.
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(0, 10, 90, 20), RectFromDegrees(-4, -10, 4, 0));
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(-4, -10, 4, 0), RectFromDegrees(0, 10, 90, 20));

  // Two rectangles share same or complement longitudinal intervals.
  S2LatLngRect a = RectFromDegrees(-50, -10, 50, 10);
  S2LatLngRect b = RectFromDegrees(30, -10, 60, 10);
  VerifyGetDirectedHausdorffDistance(a, b);
  S2LatLngRect c(a.lat(), a.lng().Complement());
  VerifyGetDirectedHausdorffDistance(c, b);

  // rectangle a touches b_opposite_lng.
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(10, 170, 30, 180), RectFromDegrees(-50, -10, 50, 10));
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(10, -180, 30, -170), RectFromDegrees(-50, -10, 50, 10));

  // rectangle b's Voronoi diagram is degenerate (lng interval spans 180
  // degrees), and a touches the degenerate Voronoi vertex.
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(-30, 170, 30, 180), RectFromDegrees(-10, -90, 10, 90));
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(-30, -180, 30, -170), RectFromDegrees(-10, -90, 10, 90));

  // rectangle a touches a voronoi vertex of rectangle b.
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(-20, 105, 20, 110), RectFromDegrees(-30, 5, 30, 15));
  VerifyGetDirectedHausdorffDistance(
      RectFromDegrees(-20, 95, 20, 105), RectFromDegrees(-30, 5, 30, 15));
}