summaryrefslogtreecommitdiff
path: root/src/third_party/wiredtiger/src/btree/bt_read.c
blob: 901884985353ea83ce04d91f648096c32f1aff4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
/*-
 * Copyright (c) 2014-2016 MongoDB, Inc.
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

#include "wt_internal.h"

/*
 * __wt_las_remove_block --
 *	Remove all records matching a key prefix from the lookaside store.
 */
int
__wt_las_remove_block(WT_SESSION_IMPL *session,
    WT_CURSOR *cursor, uint32_t btree_id, const uint8_t *addr, size_t addr_size)
{
	WT_DECL_ITEM(las_addr);
	WT_DECL_ITEM(las_key);
	WT_DECL_RET;
	uint64_t las_counter, las_txnid;
	int64_t remove_cnt;
	uint32_t las_id;
	int exact;

	remove_cnt = 0;

	WT_ERR(__wt_scr_alloc(session, 0, &las_addr));
	WT_ERR(__wt_scr_alloc(session, 0, &las_key));

	/*
	 * Search for the block's unique prefix and step through all matching
	 * records, removing them.
	 */
	las_addr->data = addr;
	las_addr->size = addr_size;
	las_key->size = 0;
	cursor->set_key(
	    cursor, btree_id, las_addr, (uint64_t)0, (uint32_t)0, las_key);
	if ((ret = cursor->search_near(cursor, &exact)) == 0 && exact < 0)
		ret = cursor->next(cursor);
	for (; ret == 0; ret = cursor->next(cursor)) {
		WT_ERR(cursor->get_key(cursor,
		    &las_id, las_addr, &las_counter, &las_txnid, las_key));

		/*
		 * Confirm the search using the unique prefix; if not a match,
		 * we're done searching for records for this page.
		 */
		 if (las_id != btree_id ||
		     las_addr->size != addr_size ||
		     memcmp(las_addr->data, addr, addr_size) != 0)
			break;

		/*
		 * Cursor opened overwrite=true: won't return WT_NOTFOUND should
		 * another thread remove the record before we do, and the cursor
		 * remains positioned in that case.
		 */
		WT_ERR(cursor->remove(cursor));
		++remove_cnt;
	}
	WT_ERR_NOTFOUND_OK(ret);

err:	__wt_scr_free(session, &las_addr);
	__wt_scr_free(session, &las_key);

	/*
	 * If there were races to remove records, we can over-count.  All
	 * arithmetic is signed, so underflow isn't fatal, but check anyway so
	 * we don't skew low over time.
	 */
	if (remove_cnt > S2C(session)->las_record_cnt)
		S2C(session)->las_record_cnt = 0;
	else if (remove_cnt > 0)
		(void)__wt_atomic_subi64(
		    &S2C(session)->las_record_cnt, remove_cnt);

	return (ret);
}

/*
 * __col_instantiate --
 *	Update a column-store page entry based on a lookaside table update list.
 */
static int
__col_instantiate(WT_SESSION_IMPL *session,
    uint64_t recno, WT_REF *ref, WT_CURSOR_BTREE *cbt, WT_UPDATE *upd)
{
	/* Search the page and add updates. */
	WT_RET(__wt_col_search(session, recno, ref, cbt));
	WT_RET(__wt_col_modify(session, cbt, recno, NULL, upd, false));
	return (0);
}

/*
 * __row_instantiate --
 *	Update a row-store page entry based on a lookaside table update list.
 */
static int
__row_instantiate(WT_SESSION_IMPL *session,
    WT_ITEM *key, WT_REF *ref, WT_CURSOR_BTREE *cbt, WT_UPDATE *upd)
{
	/* Search the page and add updates. */
	WT_RET(__wt_row_search(session, key, ref, cbt, true));
	WT_RET(__wt_row_modify(session, cbt, key, NULL, upd, false));
	return (0);
}

/*
 * __las_page_instantiate --
 *	Instantiate lookaside update records in a recently read page.
 */
static int
__las_page_instantiate(WT_SESSION_IMPL *session,
    WT_REF *ref, uint32_t read_id, const uint8_t *addr, size_t addr_size)
{
	WT_CURSOR *cursor;
	WT_CURSOR_BTREE cbt;
	WT_DECL_ITEM(current_key);
	WT_DECL_ITEM(las_addr);
	WT_DECL_ITEM(las_key);
	WT_DECL_ITEM(las_value);
	WT_DECL_RET;
	WT_PAGE *page;
	WT_UPDATE *first_upd, *last_upd, *upd;
	size_t incr, total_incr;
	uint64_t current_recno, las_counter, las_txnid, recno, upd_txnid;
	uint32_t las_id, upd_size, session_flags;
	int exact;
	const uint8_t *p;

	cursor = NULL;
	page = ref->page;
	first_upd = last_upd = upd = NULL;
	total_incr = 0;
	current_recno = recno = WT_RECNO_OOB;
	session_flags = 0;		/* [-Werror=maybe-uninitialized] */

	__wt_btcur_init(session, &cbt);
	__wt_btcur_open(&cbt);

	WT_ERR(__wt_scr_alloc(session, 0, &current_key));
	WT_ERR(__wt_scr_alloc(session, 0, &las_addr));
	WT_ERR(__wt_scr_alloc(session, 0, &las_key));
	WT_ERR(__wt_scr_alloc(session, 0, &las_value));

	/* Open a lookaside table cursor. */
	__wt_las_cursor(session, &cursor, &session_flags);

	/*
	 * The lookaside records are in key and update order, that is, there
	 * will be a set of in-order updates for a key, then another set of
	 * in-order updates for a subsequent key. We process all of the updates
	 * for a key and then insert those updates into the page, then all the
	 * updates for the next key, and so on.
	 *
	 * Search for the block's unique prefix, stepping through any matching
	 * records.
	 */
	las_addr->data = addr;
	las_addr->size = addr_size;
	las_key->size = 0;
	cursor->set_key(
	    cursor, read_id, las_addr, (uint64_t)0, (uint32_t)0, las_key);
	if ((ret = cursor->search_near(cursor, &exact)) == 0 && exact < 0)
		ret = cursor->next(cursor);
	for (; ret == 0; ret = cursor->next(cursor)) {
		WT_ERR(cursor->get_key(cursor,
		    &las_id, las_addr, &las_counter, &las_txnid, las_key));

		/*
		 * Confirm the search using the unique prefix; if not a match,
		 * we're done searching for records for this page.
		 */
		if (las_id != read_id ||
		    las_addr->size != addr_size ||
		    memcmp(las_addr->data, addr, addr_size) != 0)
			break;

		/*
		 * If the on-page value has become globally visible, this record
		 * is no longer needed.
		 */
		if (__wt_txn_visible_all(session, las_txnid))
			continue;

		/* Allocate the WT_UPDATE structure. */
		WT_ERR(cursor->get_value(
		    cursor, &upd_txnid, &upd_size, las_value));
		WT_ERR(__wt_update_alloc(session,
		    (upd_size == WT_UPDATE_DELETED_VALUE) ? NULL : las_value,
		    &upd, &incr));
		total_incr += incr;
		upd->txnid = upd_txnid;

		switch (page->type) {
		case WT_PAGE_COL_FIX:
		case WT_PAGE_COL_VAR:
			p = las_key->data;
			WT_ERR(__wt_vunpack_uint(&p, 0, &recno));
			if (current_recno == recno)
				break;
			WT_ASSERT(session, current_recno < recno);

			if (first_upd != NULL) {
				WT_ERR(__col_instantiate(session,
				    current_recno, ref, &cbt, first_upd));
				first_upd = NULL;
			}
			current_recno = recno;
			break;
		case WT_PAGE_ROW_LEAF:
			if (current_key->size == las_key->size &&
			    memcmp(current_key->data,
			    las_key->data, las_key->size) == 0)
				break;

			if (first_upd != NULL) {
				WT_ERR(__row_instantiate(session,
				    current_key, ref, &cbt, first_upd));
				first_upd = NULL;
			}
			WT_ERR(__wt_buf_set(session,
			    current_key, las_key->data, las_key->size));
			break;
		WT_ILLEGAL_VALUE_ERR(session);
		}

		/* Append the latest update to the list. */
		if (first_upd == NULL)
			first_upd = last_upd = upd;
		else {
			last_upd->next = upd;
			last_upd = upd;
		}
		upd = NULL;
	}
	WT_ERR_NOTFOUND_OK(ret);

	/* Insert the last set of updates, if any. */
	if (first_upd != NULL)
		switch (page->type) {
		case WT_PAGE_COL_FIX:
		case WT_PAGE_COL_VAR:
			WT_ERR(__col_instantiate(session,
			    current_recno, ref, &cbt, first_upd));
			first_upd = NULL;
			break;
		case WT_PAGE_ROW_LEAF:
			WT_ERR(__row_instantiate(session,
			    current_key, ref, &cbt, first_upd));
			first_upd = NULL;
			break;
		WT_ILLEGAL_VALUE_ERR(session);
		}

	/* Discard the cursor. */
	WT_ERR(__wt_las_cursor_close(session, &cursor, session_flags));

	if (total_incr != 0) {
		__wt_cache_page_inmem_incr(session, page, total_incr);

		/*
		 * We've modified/dirtied the page, but that's not necessary and
		 * if we keep the page clean, it's easier to evict. We leave the
		 * lookaside table updates in place, so if we evict this page
		 * without dirtying it, any future instantiation of it will find
		 * the records it needs. If the page is dirtied before eviction,
		 * then we'll write any needed lookaside table records for the
		 * new location of the page.
		 */
		__wt_page_modify_clear(session, page);
	}

err:	WT_TRET(__wt_las_cursor_close(session, &cursor, session_flags));
	WT_TRET(__wt_btcur_close(&cbt, true));

	/*
	 * On error, upd points to a single unlinked WT_UPDATE structure,
	 * first_upd points to a list.
	 */
	__wt_free(session, upd);
	__wt_free_update_list(session, first_upd);

	__wt_scr_free(session, &current_key);
	__wt_scr_free(session, &las_addr);
	__wt_scr_free(session, &las_key);
	__wt_scr_free(session, &las_value);

	return (ret);
}

/*
 * __evict_force_check --
 *	Check if a page matches the criteria for forced eviction.
 */
static bool
__evict_force_check(WT_SESSION_IMPL *session, WT_REF *ref)
{
	WT_BTREE *btree;
	WT_PAGE *page;

	btree = S2BT(session);
	page = ref->page;

	/* Leaf pages only. */
	if (WT_PAGE_IS_INTERNAL(page))
		return (false);

	/*
	 * It's hard to imagine a page with a huge memory footprint that has
	 * never been modified, but check to be sure.
	 */
	if (page->modify == NULL)
		return (false);

	/* Pages are usually small enough, check that first. */
	if (page->memory_footprint < btree->splitmempage)
		return (false);

	/*
	 * If this session has more than one hazard pointer, eviction will fail
	 * and there is no point trying.
	 */
	if (__wt_hazard_count(session, page) > 1)
		return (false);

	/* If we can do an in-memory split, do it. */
	if (__wt_leaf_page_can_split(session, page))
		return (true);
	if (page->memory_footprint < btree->maxmempage)
		return (false);

	/* Bump the oldest ID, we're about to do some visibility checks. */
	WT_IGNORE_RET(__wt_txn_update_oldest(session, 0));

	/*
	 * Allow some leeway if the transaction ID isn't moving forward since
	 * it is unlikely eviction will be able to evict the page. Don't keep
	 * skipping the page indefinitely or large records can lead to
	 * extremely large memory footprints.
	 */
	if (page->modify->update_restored &&
	    page->modify->last_eviction_id == __wt_txn_oldest_id(session))
		return (false);

	/* Trigger eviction on the next page release. */
	__wt_page_evict_soon(session, ref);

	/* If eviction cannot succeed, don't try. */
	return (__wt_page_can_evict(session, ref, NULL));
}

/*
 * __page_read --
 *	Read a page from the file.
 */
static int
__page_read(WT_SESSION_IMPL *session, WT_REF *ref)
{
	struct timespec start, stop;
	const WT_PAGE_HEADER *dsk;
	WT_BTREE *btree;
	WT_DECL_RET;
	WT_ITEM tmp;
	WT_PAGE *page;
	size_t addr_size;
	uint32_t previous_state;
	const uint8_t *addr;

	btree = S2BT(session);
	page = NULL;

	/*
	 * Don't pass an allocated buffer to the underlying block read function,
	 * force allocation of new memory of the appropriate size.
	 */
	WT_CLEAR(tmp);

	/*
	 * Attempt to set the state to WT_REF_READING for normal reads, or
	 * WT_REF_LOCKED, for deleted pages.  If successful, we've won the
	 * race, read the page.
	 */
	if (__wt_atomic_casv32(&ref->state, WT_REF_DISK, WT_REF_READING))
		previous_state = WT_REF_DISK;
	else if (__wt_atomic_casv32(&ref->state, WT_REF_DELETED, WT_REF_LOCKED))
		previous_state = WT_REF_DELETED;
	else
		return (0);

	/*
	 * Get the address: if there is no address, the page was deleted, but a
	 * subsequent search or insert is forcing re-creation of the name space.
	 */
	__wt_ref_info(ref, &addr, &addr_size, NULL);
	if (addr == NULL) {
		WT_ASSERT(session, previous_state == WT_REF_DELETED);

		WT_ERR(__wt_btree_new_leaf_page(session, &page));
		ref->page = page;
		goto done;
	}

	/*
	 * There's an address, read or map the backing disk page and build an
	 * in-memory version of the page.
	 */
	if (!F_ISSET(session, WT_SESSION_INTERNAL))
		__wt_epoch(session, &start);
	WT_ERR(__wt_bt_read(session, &tmp, addr, addr_size));
	if (!F_ISSET(session, WT_SESSION_INTERNAL)) {
		__wt_epoch(session, &stop);
		WT_STAT_CONN_INCR(session, cache_read_app_count);
		WT_STAT_CONN_INCRV(session, cache_read_app_time,
		    WT_TIMEDIFF_US(stop, start));
	}
	WT_ERR(__wt_page_inmem(session, ref, tmp.data, tmp.memsize,
	    WT_DATA_IN_ITEM(&tmp) ?
	    WT_PAGE_DISK_ALLOC : WT_PAGE_DISK_MAPPED, &page));

	/*
	 * Clear the local reference to an allocated copy of the disk image on
	 * return; the page steals it, errors in this code should not free it.
	 */
	tmp.mem = NULL;

	/*
	 * If reading for a checkpoint, there's no additional work to do, the
	 * page on disk is correct as written.
	 */
	if (session->dhandle->checkpoint != NULL)
		goto done;

	/* If the page was deleted, instantiate that information. */
	if (previous_state == WT_REF_DELETED)
		WT_ERR(__wt_delete_page_instantiate(session, ref));

	/*
	 * Instantiate updates from the database's lookaside table. The page
	 * flag was set when the page was written, potentially a long time ago.
	 * We only care if the lookaside table is currently active, check that
	 * before doing any work.
	 */
	dsk = tmp.data;
	if (F_ISSET(dsk, WT_PAGE_LAS_UPDATE) && __wt_las_is_written(session)) {
		WT_STAT_CONN_INCR(session, cache_read_lookaside);
		WT_STAT_DATA_INCR(session, cache_read_lookaside);

		WT_ERR(__las_page_instantiate(
		    session, ref, btree->id, addr, addr_size));
	}

done:	WT_PUBLISH(ref->state, WT_REF_MEM);
	return (0);

err:	/*
	 * If the function building an in-memory version of the page failed,
	 * it discarded the page, but not the disk image.  Discard the page
	 * and separately discard the disk image in all cases.
	 */
	if (ref->page != NULL)
		__wt_ref_out(session, ref);
	WT_PUBLISH(ref->state, previous_state);

	__wt_buf_free(session, &tmp);

	return (ret);
}

/*
 * __wt_page_in_func --
 *	Acquire a hazard pointer to a page; if the page is not in-memory,
 *	read it from the disk and build an in-memory version.
 */
int
__wt_page_in_func(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t flags
#ifdef HAVE_DIAGNOSTIC
    , const char *file, int line
#endif
    )
{
	WT_BTREE *btree;
	WT_DECL_RET;
	WT_PAGE *page;
	u_int sleep_cnt, wait_cnt;
	bool busy, cache_work, evict_soon, stalled;
	int force_attempts;

	btree = S2BT(session);

	/*
	 * Ignore reads of pages already known to be in cache, otherwise the
	 * eviction server can dominate these statistics.
	 */
	if (!LF_ISSET(WT_READ_CACHE)) {
		WT_STAT_CONN_INCR(session, cache_pages_requested);
		WT_STAT_DATA_INCR(session, cache_pages_requested);
	}

	for (evict_soon = stalled = false,
	    force_attempts = 0, sleep_cnt = wait_cnt = 0;;) {
		switch (ref->state) {
		case WT_REF_DELETED:
			if (LF_ISSET(WT_READ_NO_EMPTY) &&
			    __wt_delete_page_skip(session, ref, false))
				return (WT_NOTFOUND);
			/* FALLTHROUGH */
		case WT_REF_DISK:
			if (LF_ISSET(WT_READ_CACHE))
				return (WT_NOTFOUND);

			/*
			 * The page isn't in memory, read it. If this thread is
			 * allowed to do eviction work, check for space in the
			 * cache.
			 */
			if (!LF_ISSET(WT_READ_NO_EVICT))
				WT_RET(__wt_cache_eviction_check(
				    session, 1, NULL));
			WT_RET(__page_read(session, ref));

			/*
			 * If configured to not trash the cache, leave the page
			 * generation unset, we'll set it before returning to
			 * the oldest read generation, so the page is forcibly
			 * evicted as soon as possible. We don't do that set
			 * here because we don't want to evict the page before
			 * we "acquire" it.
			 */
			evict_soon = LF_ISSET(WT_READ_WONT_NEED) ||
			    F_ISSET(session, WT_SESSION_NO_CACHE);
			continue;
		case WT_REF_READING:
			if (LF_ISSET(WT_READ_CACHE))
				return (WT_NOTFOUND);
			if (LF_ISSET(WT_READ_NO_WAIT))
				return (WT_NOTFOUND);

			/* Waiting on another thread's read, stall. */
			WT_STAT_CONN_INCR(session, page_read_blocked);
			stalled = true;
			break;
		case WT_REF_LOCKED:
			if (LF_ISSET(WT_READ_NO_WAIT))
				return (WT_NOTFOUND);

			/* Waiting on eviction, stall. */
			WT_STAT_CONN_INCR(session, page_locked_blocked);
			stalled = true;
			break;
		case WT_REF_SPLIT:
			return (WT_RESTART);
		case WT_REF_MEM:
			/*
			 * The page is in memory.
			 *
			 * Get a hazard pointer if one is required. We cannot
			 * be evicting if no hazard pointer is required, we're
			 * done.
			 */
			if (F_ISSET(btree, WT_BTREE_IN_MEMORY))
				goto skip_evict;

			/*
			 * The expected reason we can't get a hazard pointer is
			 * because the page is being evicted, yield, try again.
			 */
#ifdef HAVE_DIAGNOSTIC
			WT_RET(
			    __wt_hazard_set(session, ref, &busy, file, line));
#else
			WT_RET(__wt_hazard_set(session, ref, &busy));
#endif
			if (busy) {
				WT_STAT_CONN_INCR(session, page_busy_blocked);
				break;
			}

			/*
			 * If eviction is configured for this file, check to see
			 * if the page qualifies for forced eviction and update
			 * the page's generation number. If eviction isn't being
			 * done on this file, we're done.
			 * In-memory split of large pages is allowed while
			 * no_eviction is set on btree, whereas reconciliation
			 * is not allowed.
			 */
			if (LF_ISSET(WT_READ_NO_EVICT) ||
			    F_ISSET(session, WT_SESSION_NO_EVICTION) ||
			    (F_ISSET(btree, WT_BTREE_NO_EVICTION) &&
			     !F_ISSET(btree, WT_BTREE_NO_RECONCILE)))
				goto skip_evict;

			/*
			 * Forcibly evict pages that are too big.
			 */
			if (force_attempts < 10 &&
			    __evict_force_check(session, ref)) {
				++force_attempts;
				ret = __wt_page_release_evict(session, ref);
				/* If forced eviction fails, stall. */
				if (ret == EBUSY) {
					ret = 0;
					WT_STAT_CONN_INCR(session,
					    page_forcible_evict_blocked);
					stalled = true;
					break;
				}
				WT_RET(ret);

				/*
				 * The result of a successful forced eviction
				 * is a page-state transition (potentially to
				 * an in-memory page we can use, or a restart
				 * return for our caller), continue the outer
				 * page-acquisition loop.
				 */
				continue;
			}

			/*
			 * If we read the page and are configured to not trash
			 * the cache, and no other thread has already used the
			 * page, set the oldest read generation so the page is
			 * forcibly evicted as soon as possible.
			 *
			 * Otherwise, if we read the page, or, if configured to
			 * update the page's read generation and the page isn't
			 * already flagged for forced eviction, update the page
			 * read generation.
			 */
			page = ref->page;
			if (page->read_gen == WT_READGEN_NOTSET) {
				if (evict_soon)
					__wt_page_evict_soon(session, ref);
				else
					__wt_cache_read_gen_new(session, page);
			} else if (!LF_ISSET(WT_READ_NO_GEN))
				__wt_cache_read_gen_bump(session, page);
skip_evict:
			/*
			 * Check if we need an autocommit transaction.
			 * Starting a transaction can trigger eviction, so skip
			 * it if eviction isn't permitted.
			 */
			return (LF_ISSET(WT_READ_NO_EVICT) ? 0 :
			    __wt_txn_autocommit_check(session));
		WT_ILLEGAL_VALUE(session);
		}

		/*
		 * We failed to get the page -- yield before retrying, and if
		 * we've yielded enough times, start sleeping so we don't burn
		 * CPU to no purpose.
		 */
		if (stalled)
			wait_cnt += WT_THOUSAND;
		else if (++wait_cnt < WT_THOUSAND) {
			__wt_yield();
			continue;
		}

		/*
		 * If stalling and this thread is allowed to do eviction work,
		 * check if the cache needs help. If we do work for the cache,
		 * substitute that for a sleep.
		 */
		if (!LF_ISSET(WT_READ_NO_EVICT)) {
			WT_RET(
			    __wt_cache_eviction_check(session, 1, &cache_work));
			if (cache_work)
				continue;
		}
		sleep_cnt = WT_MIN(sleep_cnt + WT_THOUSAND, 10000);
		WT_STAT_CONN_INCRV(session, page_sleep, sleep_cnt);
		__wt_sleep(0, sleep_cnt);
	}
}