summaryrefslogtreecommitdiff
path: root/src/third_party/wiredtiger/src/evict/evict_page.c
blob: de249ec4a4b9a9e76c1fb5587fa3461ba52d7e52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
/*-
 * Copyright (c) 2014-present MongoDB, Inc.
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

#include "wt_internal.h"

static int __evict_page_clean_update(WT_SESSION_IMPL *, WT_REF *, uint32_t);
static int __evict_page_dirty_update(WT_SESSION_IMPL *, WT_REF *, uint32_t);
static int __evict_review(WT_SESSION_IMPL *, WT_REF *, uint32_t, bool *);

/*
 * __evict_exclusive_clear --
 *     Release exclusive access to a page.
 */
static inline void
__evict_exclusive_clear(WT_SESSION_IMPL *session, WT_REF *ref, uint8_t previous_state)
{
    WT_ASSERT(session, ref->state == WT_REF_LOCKED && ref->page != NULL);

    WT_REF_SET_STATE(ref, previous_state);
}

/*
 * __evict_exclusive --
 *     Acquire exclusive access to a page.
 */
static inline int
__evict_exclusive(WT_SESSION_IMPL *session, WT_REF *ref)
{
    WT_ASSERT(session, ref->state == WT_REF_LOCKED);

    /*
     * Check for a hazard pointer indicating another thread is using the page, meaning the page
     * cannot be evicted.
     */
    if (__wt_hazard_check(session, ref, NULL) == NULL)
        return (0);

    WT_STAT_CONN_DATA_INCR(session, cache_eviction_hazard);
    return (__wt_set_return(session, EBUSY));
}

/*
 * __wt_page_release_evict --
 *     Release a reference to a page, and attempt to immediately evict it.
 */
int
__wt_page_release_evict(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t flags)
{
    WT_BTREE *btree;
    WT_DECL_RET;
    uint32_t evict_flags;
    uint8_t previous_state;
    bool locked;

    btree = S2BT(session);

    /*
     * This function always releases the hazard pointer - ensure that's done regardless of whether
     * we can get exclusive access. Take some care with order of operations: if we release the
     * hazard pointer without first locking the page, it could be evicted in between.
     */
    previous_state = ref->state;
    locked =
      previous_state == WT_REF_MEM && WT_REF_CAS_STATE(session, ref, previous_state, WT_REF_LOCKED);
    if ((ret = __wt_hazard_clear(session, ref)) != 0 || !locked) {
        if (locked)
            WT_REF_SET_STATE(ref, previous_state);
        return (ret == 0 ? EBUSY : ret);
    }

    evict_flags = LF_ISSET(WT_READ_NO_SPLIT) ? WT_EVICT_CALL_NO_SPLIT : 0;
    FLD_SET(evict_flags, WT_EVICT_CALL_URGENT);

    WT_RET(__wt_curhs_cache(session));
    (void)__wt_atomic_addv32(&btree->evict_busy, 1);
    ret = __wt_evict(session, ref, previous_state, evict_flags);
    (void)__wt_atomic_subv32(&btree->evict_busy, 1);

    return (ret);
}

/*
 * __wt_evict --
 *     Evict a page.
 */
int
__wt_evict(WT_SESSION_IMPL *session, WT_REF *ref, uint8_t previous_state, uint32_t flags)
{
    WT_CONNECTION_IMPL *conn;
    WT_DECL_RET;
    WT_PAGE *page;
    uint64_t time_start, time_stop;
    bool clean_page, closing, force_evict_hs, inmem_split, local_gen, tree_dead;

    conn = S2C(session);
    page = ref->page;
    closing = LF_ISSET(WT_EVICT_CALL_CLOSING);
    force_evict_hs = false;
    local_gen = false;
    time_start = time_stop = 0; /* [-Werror=maybe-uninitialized] */

    __wt_verbose(
      session, WT_VERB_EVICT, "page %p (%s)", (void *)page, __wt_page_type_string(page->type));

    tree_dead = F_ISSET(session->dhandle, WT_DHANDLE_DEAD);
    if (tree_dead)
        LF_SET(WT_EVICT_CALL_NO_SPLIT);

    /*
     * Enter the eviction generation. If we re-enter eviction, leave the previous eviction
     * generation (which must be as low as the current generation), untouched.
     */
    if (__wt_session_gen(session, WT_GEN_EVICT) == 0) {
        local_gen = true;
        __wt_session_gen_enter(session, WT_GEN_EVICT);
    }

    /*
     * Track how long forcible eviction took. Immediately increment the forcible eviction counter,
     * we might do an in-memory split and not an eviction, which skips the other statistics.
     */
    if (LF_ISSET(WT_EVICT_CALL_URGENT)) {
        time_start = __wt_clock(session);
        WT_STAT_CONN_INCR(session, cache_eviction_force);

        /*
         * Track history store pages being force evicted while holding a history store cursor open.
         */
        if (session->hs_cursor_counter > 0 && WT_IS_HS(session->dhandle)) {
            force_evict_hs = true;
            WT_STAT_CONN_INCR(session, cache_eviction_force_hs);
        }
    }

    /*
     * Get exclusive access to the page if our caller doesn't have the tree locked down.
     */
    if (!closing) {
        WT_ERR(__evict_exclusive(session, ref));

        /*
         * Now the page is locked, remove it from the LRU eviction queue. We have to do this before
         * freeing the page memory or otherwise touching the reference because eviction paths assume
         * a non-NULL reference on the queue is pointing at valid memory.
         */
        __wt_evict_list_clear_page(session, ref);
    }

    /*
     * Review the page for conditions that would block its eviction. If the check fails (for
     * example, we find a page with active children), quit. Make this check for clean pages, too:
     * while unlikely eviction would choose an internal page with children, it's not disallowed.
     */
    WT_ERR(__evict_review(session, ref, flags, &inmem_split));

    /*
     * If there was an in-memory split, the tree has been left in the state we want: there is
     * nothing more to do.
     */
    if (inmem_split)
        goto done;

    /* Check we are not evicting an accessible internal page with an active split generation. */
    WT_ASSERT(session,
      closing || !F_ISSET(ref, WT_REF_FLAG_INTERNAL) ||
        F_ISSET(session->dhandle, WT_DHANDLE_DEAD | WT_DHANDLE_EXCLUSIVE) ||
        !__wt_gen_active(session, WT_GEN_SPLIT, page->pg_intl_split_gen));

    /* Count evictions of internal pages during normal operation. */
    if (!closing && F_ISSET(ref, WT_REF_FLAG_INTERNAL))
        WT_STAT_CONN_DATA_INCR(session, cache_eviction_internal);

    /*
     * Track the largest page size seen at eviction, it tells us something about our ability to
     * force pages out before they're larger than the cache. We don't care about races, it's just a
     * statistic.
     */
    if (page->memory_footprint > conn->cache->evict_max_page_size)
        conn->cache->evict_max_page_size = page->memory_footprint;

    /* Figure out whether reconciliation was done on the page */
    clean_page = __wt_page_evict_clean(page);

    /* Update the reference and discard the page. */
    if (__wt_ref_is_root(ref))
        __wt_ref_out(session, ref);
    else if ((clean_page && !F_ISSET(conn, WT_CONN_IN_MEMORY)) || tree_dead)
        /*
         * Pages that belong to dead trees never write back to disk and can't support page splits.
         */
        WT_ERR(__evict_page_clean_update(session, ref, flags));
    else
        WT_ERR(__evict_page_dirty_update(session, ref, flags));

    if (LF_ISSET(WT_EVICT_CALL_URGENT)) {
        time_stop = __wt_clock(session);
        if (force_evict_hs)
            WT_STAT_CONN_INCR(session, cache_eviction_force_hs_success);
        if (clean_page) {
            WT_STAT_CONN_INCR(session, cache_eviction_force_clean);
            WT_STAT_CONN_INCRV(
              session, cache_eviction_force_clean_time, WT_CLOCKDIFF_US(time_stop, time_start));
        } else {
            WT_STAT_CONN_INCR(session, cache_eviction_force_dirty);
            WT_STAT_CONN_INCRV(
              session, cache_eviction_force_dirty_time, WT_CLOCKDIFF_US(time_stop, time_start));
        }
    }
    if (clean_page)
        WT_STAT_CONN_DATA_INCR(session, cache_eviction_clean);
    else
        WT_STAT_CONN_DATA_INCR(session, cache_eviction_dirty);

    /* Count page evictions in parallel with checkpoint. */
    if (conn->txn_global.checkpoint_running)
        WT_STAT_CONN_INCR(session, cache_eviction_pages_in_parallel_with_checkpoint);

    if (0) {
err:
        if (!closing)
            __evict_exclusive_clear(session, ref, previous_state);

        if (LF_ISSET(WT_EVICT_CALL_URGENT)) {
            time_stop = __wt_clock(session);
            if (force_evict_hs)
                WT_STAT_CONN_INCR(session, cache_eviction_force_hs_fail);
            WT_STAT_CONN_INCR(session, cache_eviction_force_fail);
            WT_STAT_CONN_INCRV(
              session, cache_eviction_force_fail_time, WT_CLOCKDIFF_US(time_stop, time_start));
        }

        WT_STAT_CONN_DATA_INCR(session, cache_eviction_fail);
    }

done:
    /* Leave any local eviction generation. */
    if (local_gen)
        __wt_session_gen_leave(session, WT_GEN_EVICT);

    return (ret);
}

/*
 * __evict_delete_ref --
 *     Mark a page reference deleted and check if the parent can reverse split.
 */
static int
__evict_delete_ref(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t flags)
{
    WT_DECL_RET;
    WT_PAGE *parent;
    WT_PAGE_INDEX *pindex;
    uint32_t ndeleted;

    if (__wt_ref_is_root(ref))
        return (0);

    /*
     * Avoid doing reverse splits when closing the file, it is wasted work and some structures may
     * have already been freed.
     */
    if (!LF_ISSET(WT_EVICT_CALL_NO_SPLIT | WT_EVICT_CALL_CLOSING)) {
        parent = ref->home;
        WT_INTL_INDEX_GET(session, parent, pindex);
        ndeleted = __wt_atomic_addv32(&pindex->deleted_entries, 1);

        /*
         * If more than 10% of the parent references are deleted, try a reverse split. Don't bother
         * if there is a single deleted reference: the internal page is empty and we have to wait
         * for eviction to notice.
         *
         * This will consume the deleted ref (and eventually free it). If the reverse split can't
         * get the access it needs because something is busy, be sure that the page still ends up
         * marked deleted.
         */
        if (ndeleted > pindex->entries / 10 && pindex->entries > 1) {
            if ((ret = __wt_split_reverse(session, ref)) == 0)
                return (0);
            WT_RET_BUSY_OK(ret);

            /*
             * The child must be locked after a failed reverse split.
             */
            WT_ASSERT(session, ref->state == WT_REF_LOCKED);
        }
    }

    WT_REF_SET_STATE(ref, WT_REF_DELETED);
    return (0);
}

/*
 * __evict_page_clean_update --
 *     Update a clean page's reference on eviction.
 */
static int
__evict_page_clean_update(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t flags)
{
    WT_DECL_RET;

    /*
     * Discard the page and update the reference structure. A page with a disk address is an on-disk
     * page, and a page without a disk address is a re-instantiated deleted page (for example, by
     * searching), that was never subsequently written.
     */
    __wt_ref_out(session, ref);
    if (ref->addr == NULL) {
        WT_WITH_PAGE_INDEX(session, ret = __evict_delete_ref(session, ref, flags));
        WT_RET_BUSY_OK(ret);
    } else
        WT_REF_SET_STATE(ref, WT_REF_DISK);

    return (0);
}

/*
 * __evict_page_dirty_update --
 *     Update a dirty page's reference on eviction.
 */
static int
__evict_page_dirty_update(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t evict_flags)
{
    WT_ADDR *addr;
    WT_DECL_RET;
    WT_MULTI multi;
    WT_PAGE_MODIFY *mod;
    bool closing;

    mod = ref->page->modify;
    closing = FLD_ISSET(evict_flags, WT_EVICT_CALL_CLOSING);

    WT_ASSERT(session, ref->addr == NULL);

    switch (mod->rec_result) {
    case WT_PM_REC_EMPTY:
        /*
         * Page is empty: Update the parent to reference a deleted page. Reconciliation left the
         * page "empty", so there's no older transaction in the system that might need to see an
         * earlier version of the page. There's no backing address, if we're forced to "read" into
         * that namespace, we instantiate a new page instead of trying to read from the backing
         * store.
         */
        __wt_ref_out(session, ref);
        WT_WITH_PAGE_INDEX(session, ret = __evict_delete_ref(session, ref, evict_flags));
        WT_RET_BUSY_OK(ret);
        break;
    case WT_PM_REC_MULTIBLOCK:
        /*
         * Multiple blocks: Either a split where we reconciled a page and it turned into a lot of
         * pages or an in-memory page that got too large, we forcibly evicted it, and there wasn't
         * anything to write.
         *
         * The latter is a special case of forced eviction. Imagine a thread updating a small set
         * keys on a leaf page. The page is too large or has too many deleted items, so we try and
         * evict it, but after reconciliation there's only a small amount of live data (so it's a
         * single page we can't split), and if there's an older reader somewhere, there's data on
         * the page we can't write (so the page can't be evicted). In that case, we end up here with
         * a single block that we can't write. Take advantage of the fact we have exclusive access
         * to the page and rewrite it in memory.
         */
        if (mod->mod_multi_entries == 1) {
            WT_ASSERT(session, closing == false);
            WT_RET(__wt_split_rewrite(session, ref, &mod->mod_multi[0]));
        } else
            WT_RET(__wt_split_multi(session, ref, closing));
        break;
    case WT_PM_REC_REPLACE:
        /*
         * 1-for-1 page swap: Update the parent to reference the replacement page.
         *
         * Publish: a barrier to ensure the structure fields are set before the state change makes
         * the page available to readers.
         */
        WT_ASSERT(session, mod->mod_replace.addr != NULL);
        WT_RET(__wt_calloc_one(session, &addr));
        *addr = mod->mod_replace;
        mod->mod_replace.addr = NULL;
        mod->mod_replace.size = 0;
        ref->addr = addr;

        /*
         * Eviction wants to keep this page if we have a disk image, re-instantiate the page in
         * memory, else discard the page.
         */
        if (mod->mod_disk_image == NULL) {
            __wt_page_modify_clear(session, ref->page);
            __wt_ref_out(session, ref);
            WT_REF_SET_STATE(ref, WT_REF_DISK);
        } else {
            /*
             * The split code works with WT_MULTI structures, build one for the disk image.
             */
            memset(&multi, 0, sizeof(multi));
            multi.disk_image = mod->mod_disk_image;

            WT_RET(__wt_split_rewrite(session, ref, &multi));
        }

        break;
    default:
        return (__wt_illegal_value(session, mod->rec_result));
    }

    return (0);
}

/*
 * __evict_child_check --
 *     Review an internal page for active children.
 */
static int
__evict_child_check(WT_SESSION_IMPL *session, WT_REF *parent)
{
    WT_REF *child;
    bool active;

    /*
     * There may be cursors in the tree walking the list of child pages. The parent is locked, so
     * all we care about is cursors already in the child pages, no thread can enter them. Any cursor
     * moving through the child pages must be hazard pointer coupling between pages, where the page
     * on which it currently has a hazard pointer must be in a state other than on-disk. Walk the
     * child list forward, then backward, to ensure we don't race with a cursor walking in the
     * opposite direction from our check.
     */
    WT_INTL_FOREACH_BEGIN (session, parent->page, child) {
        switch (child->state) {
        case WT_REF_DISK:    /* On-disk */
        case WT_REF_DELETED: /* On-disk, deleted */
            break;
        default:
            return (__wt_set_return(session, EBUSY));
        }
    }
    WT_INTL_FOREACH_END;
    WT_INTL_FOREACH_REVERSE_BEGIN (session, parent->page, child) {
        switch (child->state) {
        case WT_REF_DISK:    /* On-disk */
        case WT_REF_DELETED: /* On-disk, deleted */
            break;
        default:
            return (__wt_set_return(session, EBUSY));
        }
    }
    WT_INTL_FOREACH_END;

    /*
     * The fast check is done and there are no cursors in the child pages. Make sure the child
     * WT_REF structures pages can be discarded.
     */
    WT_INTL_FOREACH_BEGIN (session, parent->page, child) {
        switch (child->state) {
        case WT_REF_DISK: /* On-disk */
            break;
        case WT_REF_DELETED: /* On-disk, deleted */
                             /*
                              * If the child page was part of a truncate, transaction rollback might
                              * switch this page into its previous state at any time, so the delete
                              * must be resolved before the parent can be evicted.
                              *
                              * We have the internal page locked, which prevents a search from
                              * descending into it. However, a walk from an adjacent leaf page could
                              * attempt to hazard couple into a child page and free the page_del
                              * structure as we are examining it. Flip the state to locked to make
                              * this check safe: if that fails, we have raced with a read and should
                              * give up on evicting the parent.
                              */
            if (!__wt_atomic_casv8(&child->state, WT_REF_DELETED, WT_REF_LOCKED))
                return (__wt_set_return(session, EBUSY));
            active = __wt_page_del_active(session, child, true);
            child->state = WT_REF_DELETED;
            if (active)
                return (__wt_set_return(session, EBUSY));
            break;
        default:
            return (__wt_set_return(session, EBUSY));
        }
    }
    WT_INTL_FOREACH_END;

    return (0);
}

/*
 * __evict_review --
 *     Get exclusive access to the page and review the page and its subtree for conditions that
 *     would block its eviction.
 */
static int
__evict_review(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t evict_flags, bool *inmem_splitp)
{
    WT_BTREE *btree;
    WT_CACHE *cache;
    WT_CONNECTION_IMPL *conn;
    WT_DECL_RET;
    WT_PAGE *page;
    uint32_t flags;
    bool closing, modified, snapshot_acquired;
    bool is_eviction_thread, use_snapshot_for_app_thread;

    *inmem_splitp = false;

    btree = S2BT(session);
    conn = S2C(session);
    page = ref->page;
    flags = WT_REC_EVICT;
    closing = FLD_ISSET(evict_flags, WT_EVICT_CALL_CLOSING);
    snapshot_acquired = false;

    /*
     * Fail if an internal has active children, the children must be evicted first. The test is
     * necessary but shouldn't fire much: the eviction code is biased for leaf pages, an internal
     * page shouldn't be selected for eviction until all children have been evicted.
     */
    if (F_ISSET(ref, WT_REF_FLAG_INTERNAL)) {
        WT_WITH_PAGE_INDEX(session, ret = __evict_child_check(session, ref));
        if (ret != 0)
            WT_STAT_CONN_INCR(session, cache_eviction_fail_active_children_on_an_internal_page);
        WT_RET(ret);
    }

    /* It is always OK to evict pages from dead trees if they don't have children. */
    if (F_ISSET(session->dhandle, WT_DHANDLE_DEAD))
        return (0);

    /*
     * Retrieve the modified state of the page. This must happen after the check for evictable
     * internal pages otherwise there is a race where a page could be marked modified due to a child
     * being transitioned to WT_REF_DISK after the modified check and before we visited the ref
     * while walking the parent index.
     */
    modified = __wt_page_is_modified(page);

    /*
     * Clean pages can't be evicted when running in memory only. This should be uncommon - we don't
     * add clean pages to the queue.
     */
    if (F_ISSET(conn, WT_CONN_IN_MEMORY) && !modified && !closing)
        return (__wt_set_return(session, EBUSY));

    /* Check if the page can be evicted. */
    if (!closing) {
        /*
         * Update the oldest ID to avoid wasted effort should it have fallen behind current.
         */
        if (modified)
            WT_RET(__wt_txn_update_oldest(session, WT_TXN_OLDEST_STRICT));

        if (!__wt_page_can_evict(session, ref, inmem_splitp))
            return (__wt_set_return(session, EBUSY));

        /*
         * Check for an append-only workload needing an in-memory split; we can't do this earlier
         * because in-memory splits require exclusive access. If an in-memory split completes, the
         * page stays in memory and the tree is left in the desired state: avoid the usual cleanup.
         */
        if (*inmem_splitp)
            return (__wt_split_insert(session, ref));
    }

    /* If the page is clean, we're done and we can evict. */
    if (!modified)
        return (0);

    /*
     * If we are trying to evict a dirty page that does not belong to history store(HS) and
     * checkpoint is processing the HS file, then avoid evicting the dirty non-HS page for now if
     * the cache is already dominated by dirty HS content.
     *
     * Evicting a non-HS dirty page can generate even more HS content. As we can not evict HS pages
     * while checkpoint is operating on the HS file, we can end up in a situation where we exceed
     * the cache size limits.
     */
    if (conn->txn_global.checkpoint_running_hs && !WT_IS_HS(btree->dhandle) &&
      __wt_cache_hs_dirty(session) && __wt_cache_full(session)) {
        WT_STAT_CONN_INCR(session, cache_eviction_blocked_checkpoint_hs);
        return (__wt_set_return(session, EBUSY));
    }
    /*
     * If reconciliation is disabled for this thread (e.g., during an eviction that writes to the
     * history store), give up.
     */
    if (F_ISSET(session, WT_SESSION_NO_RECONCILE))
        return (__wt_set_return(session, EBUSY));

    /*
     * If the page is dirty, reconcile it to decide if we can evict it.
     *
     * If we have an exclusive lock (we're discarding the tree), assert there are no updates we
     * cannot read.
     *
     * Don't set any other flags for internal pages: there are no update lists to be saved and
     * restored, changes can't be written into the history store table, nor can we re-create
     * internal pages in memory.
     *
     * For leaf pages:
     *
     * In-memory pages are a known configuration.
     *
     * Set the update/restore flag, so reconciliation will write blocks it can write and create a
     * list of skipped updates for blocks it cannot write, along with disk images. This is how
     * eviction of active, huge pages works: we take a big page and reconcile it into blocks, some
     * of which we write and discard, the rest of which we re-create as smaller in-memory pages,
     * (restoring the updates that stopped us from writing the block), and inserting the whole mess
     * into the page's parent. Set the flag in all cases because the incremental cost of
     * update/restore in reconciliation is minimal, eviction shouldn't have picked a page where
     * update/restore is necessary, absent some cache pressure. It's possible updates occurred after
     * we selected this page for eviction, but it's unlikely and we don't try and manage that risk.
     *
     * Additionally, if we aren't trying to free space in the cache, scrub the page and keep it in
     * memory.
     */
    cache = conn->cache;

    /*
     * Urgent eviction and forced eviction want two different behaviors for inefficient update
     * restore evictions, pass this flag so that reconciliation knows which to use.
     */
    if (FLD_ISSET(evict_flags, WT_EVICT_CALL_URGENT))
        LF_SET(WT_REC_CALL_URGENT);

    if (closing)
        LF_SET(WT_REC_VISIBILITY_ERR);
    else if (F_ISSET(ref, WT_REF_FLAG_INTERNAL) || WT_IS_HS(btree->dhandle))
        ;
    else if (WT_SESSION_BTREE_SYNC(session) && !WT_IS_METADATA(btree->dhandle))
        LF_SET(WT_REC_HS);
    else if (F_ISSET(conn, WT_CONN_IN_MEMORY))
        LF_SET(WT_REC_IN_MEMORY | WT_REC_SCRUB);
    else if (!WT_IS_METADATA(btree->dhandle)) {
        LF_SET(WT_REC_HS);

        /*
         * Scrub if we're supposed to or toss it in sometimes if we are in debugging mode.
         */
        if (F_ISSET(cache, WT_CACHE_EVICT_SCRUB) ||
          (F_ISSET(cache, WT_CACHE_EVICT_DEBUG_MODE) && __wt_random(&session->rnd) % 3 == 0))
            LF_SET(WT_REC_SCRUB);
    }

    /*
     * Acquire a snapshot if coming through the eviction thread route. Also, if we have entered
     * eviction through application threads and we have a transaction snapshot, we will use our
     * existing snapshot to evict pages that are not globally visible based on the last_running
     * transaction. Avoid using snapshots when application transactions are in the final stages of
     * commit or rollback as they have already released the snapshot. Otherwise, it becomes harder
     * in the later part of the code to detect updates that belonged to the last running application
     * transaction.
     */

    /*
     * TODO: We are deliberately not using a snapshot when checkpoint is active. This will ensure
     * that point-in-time checkpoints have a consistent version of data. Remove this condition once
     * fuzzy transaction ID based checkpoints work is merged (WT-6673).
     */
    use_snapshot_for_app_thread = !F_ISSET(session, WT_SESSION_INTERNAL) &&
      !WT_IS_METADATA(session->dhandle) && WT_SESSION_TXN_SHARED(session)->id != WT_TXN_NONE &&
      F_ISSET(session->txn, WT_TXN_HAS_SNAPSHOT);
    is_eviction_thread = F_ISSET(session, WT_SESSION_EVICTION);

    /* Make sure that both conditions above are not true at the same time. */
    WT_ASSERT(session, !use_snapshot_for_app_thread || !is_eviction_thread);

    /*
     * History store data is always evictable.
     *
     * If checkpoint is running concurrently, set the checkpoint running flag and we will abort the
     * eviction if we detect out of order timestamp updates.
     */
    if (WT_IS_HS(btree->dhandle)) {
        /*
         * FIX-ME-WT-5316: remove this when we have removed history store score and
         * __rec_update_stable. No need to set visibility flag for history store.
         */
        if (!WT_SESSION_BTREE_SYNC(session))
            LF_SET(WT_REC_VISIBLE_ALL);
    } else {
        if (is_eviction_thread) {
            /* Eviction thread doing eviction. */
            if (!conn->txn_global.checkpoint_running) {
                /*
                 * Eviction threads do not need to pin anything in the cache. We have an exclusive
                 * lock for the page being evicted so we are sure that the page will always be there
                 * while it is being processed. Therefore, we use snapshot API that doesn't publish
                 * shared IDs to the outside world.
                 */
                __wt_txn_bump_snapshot(session);
                snapshot_acquired = true;

                /*
                 * Make sure once more that there is no checkpoint running. A new checkpoint might
                 * have started between previous check and acquiring snapshot. If there is a
                 * checkpoint running, release the snapshot and fallback to global visibility
                 * checks.
                 *
                 * There should be a read barrier here otherwise the second read may be optimized
                 * away by the compiler. However, we should have already met a barrier when we bump
                 * the snapshot so the barrier is omitted here.
                 */
                if (conn->txn_global.checkpoint_running) {
                    __wt_txn_release_snapshot(session);
                    snapshot_acquired = false;
                    LF_SET(WT_REC_VISIBLE_ALL | WT_REC_CHECKPOINT_RUNNING);
                }
            } else {
                if (!WT_SESSION_BTREE_SYNC(session))
                    LF_SET(WT_REC_VISIBLE_ALL);
                LF_SET(WT_REC_CHECKPOINT_RUNNING);
            }
        } else if (use_snapshot_for_app_thread) {
            /* Application thread that has a snapshot doing eviction. */
            if (!conn->txn_global.checkpoint_running)
                /*
                 * Use application snapshot for eviction only when checkpoint is not running.
                 *
                 * Checkpoint may start concurrently at this point but that is OK as it should have
                 * obtained a newer snapshot than the application thread.
                 */
                LF_SET(WT_REC_APP_EVICTION_SNAPSHOT);
            else {
                if (!WT_SESSION_BTREE_SYNC(session))
                    LF_SET(WT_REC_VISIBLE_ALL);
                LF_SET(WT_REC_CHECKPOINT_RUNNING);
            }
        } else {
            if (conn->txn_global.checkpoint_running)
                LF_SET(WT_REC_CHECKPOINT_RUNNING);
            if (!WT_SESSION_BTREE_SYNC(session))
                LF_SET(WT_REC_VISIBLE_ALL);
        }
    }

    WT_ASSERT(session, LF_ISSET(WT_REC_VISIBLE_ALL) || F_ISSET(session->txn, WT_TXN_HAS_SNAPSHOT));

    /*
     * Reconcile the page. Force read-committed isolation level if we are using snapshots for
     * eviction workers or application threads.
     */
    if (LF_ISSET(WT_REC_APP_EVICTION_SNAPSHOT) || snapshot_acquired)
        WT_WITH_TXN_ISOLATION(
          session, WT_ISO_READ_COMMITTED, ret = __wt_reconcile(session, ref, NULL, flags));
    else
        ret = __wt_reconcile(session, ref, NULL, flags);

    if (ret != 0)
        WT_STAT_CONN_INCR(session, cache_eviction_fail_in_reconciliation);

    if (snapshot_acquired)
        __wt_txn_release_snapshot(session);

    WT_RET(ret);

    /*
     * Success: assert that the page is clean or reconciliation was configured to save updates.
     */
    WT_ASSERT(session,
      !__wt_page_is_modified(page) || LF_ISSET(WT_REC_HS | WT_REC_IN_MEMORY) ||
        WT_IS_METADATA(btree->dhandle));

    return (0);
}