summaryrefslogtreecommitdiff
path: root/src/third_party/wiredtiger/src/include/btree_inline.h
blob: 7b9a2b74a5f7480d47d003568cb5dc31b84dba7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
/*-
 * Copyright (c) 2014-present MongoDB, Inc.
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

/*
 * __wt_ref_is_root --
 *     Return if the page reference is for the root page.
 */
static inline bool
__wt_ref_is_root(WT_REF *ref)
{
    return (ref->home == NULL);
}

/*
 * __wt_ref_cas_state_int --
 *     Try to do a compare and swap, if successful update the ref history in diagnostic mode.
 */
static inline bool
__wt_ref_cas_state_int(WT_SESSION_IMPL *session, WT_REF *ref, uint8_t old_state, uint8_t new_state,
  const char *func, int line)
{
    bool cas_result;

    /* Parameters that are used in a macro for diagnostic builds */
    WT_UNUSED(session);
    WT_UNUSED(func);
    WT_UNUSED(line);

    cas_result = __wt_atomic_casv8(&ref->state, old_state, new_state);

#ifdef HAVE_DIAGNOSTIC
    /*
     * The history update here has potential to race; if the state gets updated again after the CAS
     * above but before the history has been updated.
     */
    if (cas_result)
        WT_REF_SAVE_STATE(ref, new_state, func, line);
#endif
    return (cas_result);
}

/*
 * __wt_page_is_empty --
 *     Return if the page is empty.
 */
static inline bool
__wt_page_is_empty(WT_PAGE *page)
{
    /*
     * Be cautious modifying this function: it's reading fields set by checkpoint reconciliation,
     * and we're not blocking checkpoints (although we must block eviction as it might clear and
     * free these structures).
     */
    return (page->modify != NULL && page->modify->rec_result == WT_PM_REC_EMPTY);
}

/*
 * __wt_page_evict_clean --
 *     Return if the page can be evicted without dirtying the tree.
 */
static inline bool
__wt_page_evict_clean(WT_PAGE *page)
{
    /*
     * Be cautious modifying this function: it's reading fields set by checkpoint reconciliation,
     * and we're not blocking checkpoints (although we must block eviction as it might clear and
     * free these structures).
     */
    return (page->modify == NULL ||
      (page->modify->page_state == WT_PAGE_CLEAN && page->modify->rec_result == 0));
}

/*
 * __wt_page_is_modified --
 *     Return if the page is dirty.
 */
static inline bool
__wt_page_is_modified(WT_PAGE *page)
{
    /*
     * Be cautious modifying this function: it's reading fields set by checkpoint reconciliation,
     * and we're not blocking checkpoints (although we must block eviction as it might clear and
     * free these structures).
     */
    return (page->modify != NULL && page->modify->page_state != WT_PAGE_CLEAN);
}

/*
 * __wt_btree_block_free --
 *     Helper function to free a block from the current tree.
 */
static inline int
__wt_btree_block_free(WT_SESSION_IMPL *session, const uint8_t *addr, size_t addr_size)
{
    WT_BM *bm;
    WT_BTREE *btree;

    btree = S2BT(session);
    bm = btree->bm;

    return (bm->free(bm, session, addr, addr_size));
}

/*
 * __wt_btree_bytes_inuse --
 *     Return the number of bytes in use.
 */
static inline uint64_t
__wt_btree_bytes_inuse(WT_SESSION_IMPL *session)
{
    WT_BTREE *btree;
    WT_CACHE *cache;

    btree = S2BT(session);
    cache = S2C(session)->cache;

    return (__wt_cache_bytes_plus_overhead(cache, btree->bytes_inmem));
}

/*
 * __wt_btree_bytes_evictable --
 *     Return the number of bytes that can be evicted (i.e. bytes apart from the pinned root page).
 */
static inline uint64_t
__wt_btree_bytes_evictable(WT_SESSION_IMPL *session)
{
    WT_BTREE *btree;
    WT_CACHE *cache;
    WT_PAGE *root_page;
    uint64_t bytes_inmem, bytes_root;

    btree = S2BT(session);
    cache = S2C(session)->cache;
    root_page = btree->root.page;

    bytes_inmem = btree->bytes_inmem;
    bytes_root = root_page == NULL ? 0 : root_page->memory_footprint;

    return (bytes_inmem <= bytes_root ?
        0 :
        __wt_cache_bytes_plus_overhead(cache, bytes_inmem - bytes_root));
}

/*
 * __wt_btree_dirty_inuse --
 *     Return the number of dirty bytes in use.
 */
static inline uint64_t
__wt_btree_dirty_inuse(WT_SESSION_IMPL *session)
{
    WT_BTREE *btree;
    WT_CACHE *cache;

    btree = S2BT(session);
    cache = S2C(session)->cache;

    return (
      __wt_cache_bytes_plus_overhead(cache, btree->bytes_dirty_intl + btree->bytes_dirty_leaf));
}

/*
 * __wt_btree_dirty_leaf_inuse --
 *     Return the number of bytes in use by dirty leaf pages.
 */
static inline uint64_t
__wt_btree_dirty_leaf_inuse(WT_SESSION_IMPL *session)
{
    WT_BTREE *btree;
    WT_CACHE *cache;

    btree = S2BT(session);
    cache = S2C(session)->cache;

    return (__wt_cache_bytes_plus_overhead(cache, btree->bytes_dirty_leaf));
}

/*
 * __wt_btree_bytes_updates --
 *     Return the number of bytes in use by dirty leaf pages.
 */
static inline uint64_t
__wt_btree_bytes_updates(WT_SESSION_IMPL *session)
{
    WT_BTREE *btree;
    WT_CACHE *cache;

    btree = S2BT(session);
    cache = S2C(session)->cache;

    return (__wt_cache_bytes_plus_overhead(cache, btree->bytes_updates));
}

/*
 * __wt_cache_page_inmem_incr --
 *     Increment a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_incr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
    WT_BTREE *btree;
    WT_CACHE *cache;

    WT_ASSERT(session, size < WT_EXABYTE);
    btree = S2BT(session);
    cache = S2C(session)->cache;

    if (size == 0)
        return;

    /*
     * Always increase the size in sequence of cache, btree, and page as we may race with other
     * threads that are trying to decrease the sizes concurrently.
     */
    (void)__wt_atomic_add64(&cache->bytes_inmem, size);
    (void)__wt_atomic_add64(&btree->bytes_inmem, size);
    if (WT_PAGE_IS_INTERNAL(page)) {
        (void)__wt_atomic_add64(&cache->bytes_internal, size);
        (void)__wt_atomic_add64(&btree->bytes_internal, size);
    }
    (void)__wt_atomic_addsize(&page->memory_footprint, size);

    if (page->modify != NULL) {
        if (!WT_PAGE_IS_INTERNAL(page) && !btree->lsm_primary) {
            (void)__wt_atomic_add64(&cache->bytes_updates, size);
            (void)__wt_atomic_add64(&btree->bytes_updates, size);
            (void)__wt_atomic_addsize(&page->modify->bytes_updates, size);
        }
        if (__wt_page_is_modified(page)) {
            if (WT_PAGE_IS_INTERNAL(page)) {
                (void)__wt_atomic_add64(&cache->bytes_dirty_intl, size);
                (void)__wt_atomic_add64(&btree->bytes_dirty_intl, size);
            } else if (!btree->lsm_primary) {
                (void)__wt_atomic_add64(&cache->bytes_dirty_leaf, size);
                (void)__wt_atomic_add64(&btree->bytes_dirty_leaf, size);
            }
            (void)__wt_atomic_addsize(&page->modify->bytes_dirty, size);
        }
    }
}

/*
 * __wt_cache_decr_check_size --
 *     Decrement a size_t cache value and check for underflow.
 */
static inline void
__wt_cache_decr_check_size(WT_SESSION_IMPL *session, size_t *vp, size_t v, const char *fld)
{
    if (v == 0 || __wt_atomic_subsize(vp, v) < WT_EXABYTE)
        return;

    /*
     * It's a bug if this accounting underflowed but allow the application to proceed - the
     * consequence is we use more cache than configured.
     */
    *vp = 0;
    __wt_errx(session, "%s went negative with decrement of %" WT_SIZET_FMT, fld, v);

#ifdef HAVE_DIAGNOSTIC
    __wt_abort(session);
#endif
}

/*
 * __wt_cache_decr_check_uint64 --
 *     Decrement a uint64_t cache value and check for underflow.
 */
static inline void
__wt_cache_decr_check_uint64(WT_SESSION_IMPL *session, uint64_t *vp, uint64_t v, const char *fld)
{
    uint64_t orig = *vp;

    if (v == 0 || __wt_atomic_sub64(vp, v) < WT_EXABYTE)
        return;

    /*
     * It's a bug if this accounting underflowed but allow the application to proceed - the
     * consequence is we use more cache than configured.
     */
    *vp = 0;
    __wt_errx(
      session, "%s was %" PRIu64 ", went negative with decrement of %" PRIu64, fld, orig, v);

#ifdef HAVE_DIAGNOSTIC
    __wt_abort(session);
#endif
}

/*
 * __wt_cache_page_byte_dirty_decr --
 *     Decrement the page's dirty byte count, guarding from underflow.
 */
static inline void
__wt_cache_page_byte_dirty_decr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
    WT_BTREE *btree;
    WT_CACHE *cache;
    size_t decr, orig;
    int i;

    btree = S2BT(session);
    cache = S2C(session)->cache;
    decr = 0; /* [-Wconditional-uninitialized] */

    /*
     * We don't have exclusive access and there are ways of decrementing the
     * page's dirty byte count by a too-large value. For example:
     *	T1: __wt_cache_page_inmem_incr(page, size)
     *		page is clean, don't increment dirty byte count
     *	T2: mark page dirty
     *	T1: __wt_cache_page_inmem_decr(page, size)
     *		page is dirty, decrement dirty byte count
     * and, of course, the reverse where the page is dirty at the increment
     * and clean at the decrement.
     *
     * The page's dirty-byte value always reflects bytes represented in the
     * cache's dirty-byte count, decrement the page/cache as much as we can
     * without underflow. If we can't decrement the dirty byte counts after
     * few tries, give up: the cache's value will be wrong, but consistent,
     * and we'll fix it the next time this page is marked clean, or evicted.
     *
     * Always decrease the size in sequence of page, btree, and cache as we may race with other
     * threads that are trying to increase the sizes concurrently.
     */
    for (i = 0; i < 5; ++i) {
        /*
         * Take care to read the dirty-byte count only once in case we're racing with updates.
         */
        WT_ORDERED_READ(orig, page->modify->bytes_dirty);
        decr = WT_MIN(size, orig);
        if (__wt_atomic_cassize(&page->modify->bytes_dirty, orig, orig - decr))
            break;
    }

    if (i == 5)
        return;

    if (WT_PAGE_IS_INTERNAL(page)) {
        __wt_cache_decr_check_uint64(
          session, &btree->bytes_dirty_intl, decr, "WT_BTREE.bytes_dirty_intl");
        __wt_cache_decr_check_uint64(
          session, &cache->bytes_dirty_intl, decr, "WT_CACHE.bytes_dirty_intl");
    } else if (!btree->lsm_primary) {
        __wt_cache_decr_check_uint64(
          session, &btree->bytes_dirty_leaf, decr, "WT_BTREE.bytes_dirty_leaf");
        __wt_cache_decr_check_uint64(
          session, &cache->bytes_dirty_leaf, decr, "WT_CACHE.bytes_dirty_leaf");
    }
}

/*
 * __wt_cache_page_byte_updates_decr --
 *     Decrement the page's update byte count, guarding from underflow.
 */
static inline void
__wt_cache_page_byte_updates_decr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
    WT_BTREE *btree;
    WT_CACHE *cache;
    size_t decr, orig;
    int i;

    btree = S2BT(session);
    cache = S2C(session)->cache;
    decr = 0; /* [-Wconditional-uninitialized] */

    WT_ASSERT(session, !WT_PAGE_IS_INTERNAL(page) && !btree->lsm_primary && page->modify != NULL);

    /* See above for why this can race. */
    for (i = 0; i < 5; ++i) {
        WT_ORDERED_READ(orig, page->modify->bytes_updates);
        decr = WT_MIN(size, orig);
        if (__wt_atomic_cassize(&page->modify->bytes_updates, orig, orig - decr))
            break;
    }

    if (i == 5)
        return;

    __wt_cache_decr_check_uint64(session, &btree->bytes_updates, decr, "WT_BTREE.bytes_updates");
    __wt_cache_decr_check_uint64(session, &cache->bytes_updates, decr, "WT_CACHE.bytes_updates");
}
/*
 * __wt_cache_page_inmem_decr --
 *     Decrement a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_decr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
    WT_BTREE *btree;
    WT_CACHE *cache;

    btree = S2BT(session);
    cache = S2C(session)->cache;

    WT_ASSERT(session, size < WT_EXABYTE);

    /*
     * Always decrease the size in sequence of page, btree, and cache as we may race with other
     * threads that are trying to increase the sizes concurrently.
     */
    __wt_cache_decr_check_size(session, &page->memory_footprint, size, "WT_PAGE.memory_footprint");
    __wt_cache_decr_check_uint64(session, &btree->bytes_inmem, size, "WT_BTREE.bytes_inmem");
    __wt_cache_decr_check_uint64(session, &cache->bytes_inmem, size, "WT_CACHE.bytes_inmem");
    if (page->modify != NULL && !WT_PAGE_IS_INTERNAL(page) && !btree->lsm_primary)
        __wt_cache_page_byte_updates_decr(session, page, size);
    if (__wt_page_is_modified(page))
        __wt_cache_page_byte_dirty_decr(session, page, size);
    /* Track internal size in cache. */
    if (WT_PAGE_IS_INTERNAL(page)) {
        __wt_cache_decr_check_uint64(
          session, &btree->bytes_internal, size, "WT_BTREE.bytes_internal");
        __wt_cache_decr_check_uint64(
          session, &cache->bytes_internal, size, "WT_CACHE.bytes_internal");
    }
}

/*
 * __wt_cache_dirty_incr --
 *     Page switch from clean to dirty: increment the cache dirty page/byte counts.
 */
static inline void
__wt_cache_dirty_incr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_BTREE *btree;
    WT_CACHE *cache;
    size_t size;

    btree = S2BT(session);
    cache = S2C(session)->cache;

    /*
     * Always increase the size in sequence of cache, btree, and page as we may race with other
     * threads that are trying to decrease the sizes concurrently.
     *
     * Take care to read the memory_footprint once in case we are racing with updates.
     */
    size = page->memory_footprint;
    if (WT_PAGE_IS_INTERNAL(page)) {
        (void)__wt_atomic_add64(&cache->pages_dirty_intl, 1);
        (void)__wt_atomic_add64(&cache->bytes_dirty_intl, size);
        (void)__wt_atomic_add64(&btree->bytes_dirty_intl, size);
    } else {
        if (!btree->lsm_primary) {
            (void)__wt_atomic_add64(&cache->bytes_dirty_leaf, size);
            (void)__wt_atomic_add64(&btree->bytes_dirty_leaf, size);
        }
        (void)__wt_atomic_add64(&cache->pages_dirty_leaf, 1);
    }
    (void)__wt_atomic_add64(&cache->bytes_dirty_total, size);
    (void)__wt_atomic_add64(&btree->bytes_dirty_total, size);
    (void)__wt_atomic_addsize(&page->modify->bytes_dirty, size);
}

/*
 * __wt_cache_dirty_decr --
 *     Page switch from dirty to clean: decrement the cache dirty page/byte counts.
 */
static inline void
__wt_cache_dirty_decr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_CACHE *cache;
    WT_PAGE_MODIFY *modify;

    cache = S2C(session)->cache;

    if (WT_PAGE_IS_INTERNAL(page))
        __wt_cache_decr_check_uint64(
          session, &cache->pages_dirty_intl, 1, "dirty internal page count");
    else
        __wt_cache_decr_check_uint64(session, &cache->pages_dirty_leaf, 1, "dirty leaf page count");

    modify = page->modify;
    if (modify != NULL && modify->bytes_dirty != 0)
        __wt_cache_page_byte_dirty_decr(session, page, modify->bytes_dirty);
}

/*
 * __wt_cache_page_image_decr --
 *     Decrement a page image's size to the cache.
 */
static inline void
__wt_cache_page_image_decr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_CACHE *cache;

    cache = S2C(session)->cache;

    if (WT_PAGE_IS_INTERNAL(page))
        __wt_cache_decr_check_uint64(
          session, &cache->bytes_image_intl, page->dsk->mem_size, "WT_CACHE.bytes_image");
    else
        __wt_cache_decr_check_uint64(
          session, &cache->bytes_image_leaf, page->dsk->mem_size, "WT_CACHE.bytes_image");
}

/*
 * __wt_cache_page_image_incr --
 *     Increment a page image's size to the cache.
 */
static inline void
__wt_cache_page_image_incr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_CACHE *cache;

    cache = S2C(session)->cache;
    if (WT_PAGE_IS_INTERNAL(page))
        (void)__wt_atomic_add64(&cache->bytes_image_intl, page->dsk->mem_size);
    else
        (void)__wt_atomic_add64(&cache->bytes_image_leaf, page->dsk->mem_size);
}

/*
 * __wt_cache_page_evict --
 *     Evict pages from the cache.
 */
static inline void
__wt_cache_page_evict(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_BTREE *btree;
    WT_CACHE *cache;
    WT_PAGE_MODIFY *modify;

    btree = S2BT(session);
    cache = S2C(session)->cache;
    modify = page->modify;

    /* Update the bytes in-memory to reflect the eviction. */
    __wt_cache_decr_check_uint64(
      session, &btree->bytes_inmem, page->memory_footprint, "WT_BTREE.bytes_inmem");
    __wt_cache_decr_check_uint64(
      session, &cache->bytes_inmem, page->memory_footprint, "WT_CACHE.bytes_inmem");

    /* Update the bytes_internal value to reflect the eviction */
    if (WT_PAGE_IS_INTERNAL(page)) {
        __wt_cache_decr_check_uint64(
          session, &btree->bytes_internal, page->memory_footprint, "WT_BTREE.bytes_internal");
        __wt_cache_decr_check_uint64(
          session, &cache->bytes_internal, page->memory_footprint, "WT_CACHE.bytes_internal");
    }

    /* Update the cache's dirty-byte count. */
    if (modify != NULL && modify->bytes_dirty != 0) {
        if (WT_PAGE_IS_INTERNAL(page)) {
            __wt_cache_decr_check_uint64(
              session, &btree->bytes_dirty_intl, modify->bytes_dirty, "WT_BTREE.bytes_dirty_intl");
            __wt_cache_decr_check_uint64(
              session, &cache->bytes_dirty_intl, modify->bytes_dirty, "WT_CACHE.bytes_dirty_intl");
        } else if (!btree->lsm_primary) {
            __wt_cache_decr_check_uint64(
              session, &btree->bytes_dirty_leaf, modify->bytes_dirty, "WT_BTREE.bytes_dirty_leaf");
            __wt_cache_decr_check_uint64(
              session, &cache->bytes_dirty_leaf, modify->bytes_dirty, "WT_CACHE.bytes_dirty_leaf");
        }
    }

    /* Update the cache's updates-byte count. */
    if (modify != NULL) {
        __wt_cache_decr_check_uint64(
          session, &btree->bytes_updates, modify->bytes_updates, "WT_BTREE.bytes_updates");
        __wt_cache_decr_check_uint64(
          session, &cache->bytes_updates, modify->bytes_updates, "WT_CACHE.bytes_updates");
    }

    /* Update bytes and pages evicted. */
    (void)__wt_atomic_add64(&cache->bytes_evict, page->memory_footprint);
    (void)__wt_atomic_addv64(&cache->pages_evicted, 1);

    /*
     * Track if eviction makes progress. This is used in various places to determine whether
     * eviction is stuck.
     */
    if (!F_ISSET_ATOMIC(page, WT_PAGE_EVICT_NO_PROGRESS))
        (void)__wt_atomic_addv64(&cache->eviction_progress, 1);
}

/*
 * __wt_update_list_memsize --
 *     The size in memory of a list of updates.
 */
static inline size_t
__wt_update_list_memsize(WT_UPDATE *upd)
{
    size_t upd_size;

    for (upd_size = 0; upd != NULL; upd = upd->next)
        upd_size += WT_UPDATE_MEMSIZE(upd);

    return (upd_size);
}

/*
 * __wt_page_modify_init --
 *     A page is about to be modified, allocate the modification structure.
 */
static inline int
__wt_page_modify_init(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    return (page->modify == NULL ? __wt_page_modify_alloc(session, page) : 0);
}

/*
 * __wt_page_only_modify_set --
 *     Mark the page (but only the page) dirty.
 */
static inline void
__wt_page_only_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    uint64_t last_running;

    WT_ASSERT(session, !F_ISSET(session->dhandle, WT_DHANDLE_DEAD));

    last_running = 0;
    if (page->modify->page_state == WT_PAGE_CLEAN)
        last_running = S2C(session)->txn_global.last_running;

    /*
     * We depend on the atomic operation being a write barrier, that is, a barrier to ensure all
     * changes to the page are flushed before updating the page state and/or marking the tree dirty,
     * otherwise checkpoints and/or page reconciliation might be looking at a clean page/tree.
     *
     * Every time the page transitions from clean to dirty, update the cache and transactional
     * information.
     *
     * The page state can only ever be incremented above dirty by the number of concurrently running
     * threads, so the counter will never approach the point where it would wrap.
     */
    if (page->modify->page_state < WT_PAGE_DIRTY &&
      __wt_atomic_add32(&page->modify->page_state, 1) == WT_PAGE_DIRTY_FIRST) {
        __wt_cache_dirty_incr(session, page);
        /*
         * In the event we dirty a page which is flagged for eviction soon, we update its read
         * generation to avoid evicting a dirty page prematurely.
         */
        if (page->read_gen == WT_READGEN_WONT_NEED)
            __wt_cache_read_gen_new(session, page);

        /*
         * We won the race to dirty the page, but another thread could have committed in the
         * meantime, and the last_running field been updated past it. That is all very unlikely, but
         * not impossible, so we take care to read the global state before the atomic increment.
         *
         * If the page was dirty on entry, then last_running == 0. The page could have become clean
         * since then, if reconciliation completed. In that case, we leave the previous value for
         * first_dirty_txn rather than potentially racing to update it, at worst, we'll
         * unnecessarily write a page in a checkpoint.
         */
        if (last_running != 0)
            page->modify->first_dirty_txn = last_running;
    }

    /* Check if this is the largest transaction ID to update the page. */
    if (WT_TXNID_LT(page->modify->update_txn, session->txn->id))
        page->modify->update_txn = session->txn->id;
}

/*
 * __wt_tree_modify_set --
 *     Mark the tree dirty.
 */
static inline void
__wt_tree_modify_set(WT_SESSION_IMPL *session)
{
    /*
     * Test before setting the dirty flag, it's a hot cache line.
     *
     * The tree's modified flag is cleared by the checkpoint thread: set it and insert a barrier
     * before dirtying the page. (I don't think it's a problem if the tree is marked dirty with all
     * the pages clean, it might result in an extra checkpoint that doesn't do any work but it
     * shouldn't cause problems; regardless, let's play it safe.)
     */
    if (!S2BT(session)->modified) {
        /* Assert we never dirty a checkpoint handle. */
        WT_ASSERT(session, session->dhandle->checkpoint == NULL);

        S2BT(session)->modified = true;
        WT_FULL_BARRIER();
    }

    /*
     * The btree may already be marked dirty while the connection is still clean; mark the
     * connection dirty outside the test of the btree state.
     */
    if (!S2C(session)->modified)
        S2C(session)->modified = true;
}

/*
 * __wt_page_modify_clear --
 *     Clean a modified page.
 */
static inline void
__wt_page_modify_clear(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    /*
     * The page must be held exclusive when this call is made, this call can only be used when the
     * page is owned by a single thread.
     *
     * Allow the call to be made on clean pages.
     */
    if (__wt_page_is_modified(page)) {
        /*
         * The only part where ordering matters is during reconciliation where updates on other
         * threads are performing writes to the page state that need to be visible to the
         * reconciliation thread.
         *
         * Since clearing of the page state is not going to be happening during reconciliation on a
         * separate thread, there's no write barrier needed here.
         */
        page->modify->page_state = WT_PAGE_CLEAN;
        __wt_cache_dirty_decr(session, page);
    }
}

/*
 * __wt_page_modify_set --
 *     Mark the page and tree dirty.
 */
static inline void
__wt_page_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    /*
     * Prepared records in the datastore require page updates, even for read-only handles, don't
     * mark the tree or page dirty.
     */
    if (F_ISSET(S2BT(session), WT_BTREE_READONLY))
        return;

    /*
     * Mark the tree dirty (even if the page is already marked dirty), newly created pages to
     * support "empty" files are dirty, but the file isn't marked dirty until there's a real change
     * needing to be written.
     */
    __wt_tree_modify_set(session);

    __wt_page_only_modify_set(session, page);
}

/*
 * __wt_page_parent_modify_set --
 *     Mark the parent page, and optionally the tree, dirty.
 */
static inline int
__wt_page_parent_modify_set(WT_SESSION_IMPL *session, WT_REF *ref, bool page_only)
{
    WT_PAGE *parent;

    /*
     * This function exists as a place to stash this comment. There are a few places where we need
     * to dirty a page's parent. The trick is the page's parent might split at any point, and the
     * page parent might be the wrong parent at any particular time. We ignore this and dirty
     * whatever page the page's reference structure points to. This is safe because if we're
     * pointing to the wrong parent, that parent must have split, deepening the tree, which implies
     * marking the original parent and all of the newly-created children as dirty. In other words,
     * if we have the wrong parent page, everything was marked dirty already.
     */
    parent = ref->home;
    WT_RET(__wt_page_modify_init(session, parent));
    if (page_only)
        __wt_page_only_modify_set(session, parent);
    else
        __wt_page_modify_set(session, parent);
    return (0);
}

/*
 * __wt_off_page --
 *     Return if a pointer references off-page data.
 */
static inline bool
__wt_off_page(WT_PAGE *page, const void *p)
{
    /*
     * There may be no underlying page, in which case the reference is off-page by definition.
     */
    return (page->dsk == NULL || p < (void *)page->dsk ||
      p >= (void *)((uint8_t *)page->dsk + page->dsk->mem_size));
}

/*
 * __wt_ref_key --
 *     Return a reference to a row-store internal page key as cheaply as possible.
 */
static inline void
__wt_ref_key(WT_PAGE *page, WT_REF *ref, void *keyp, size_t *sizep)
{
    uintptr_t v;

/*
 * An internal page key is in one of two places: if we instantiated the
 * key (for example, when reading the page), WT_REF.ref_ikey references
 * a WT_IKEY structure, otherwise WT_REF.ref_ikey references an on-page
 * key offset/length pair.
 *
 * Now the magic: allocated memory must be aligned to store any standard
 * type, and we expect some standard type to require at least quad-byte
 * alignment, so allocated memory should have some clear low-order bits.
 * On-page objects consist of an offset/length pair: the maximum page
 * size currently fits into 29 bits, so we use the low-order bits of the
 * pointer to mark the other bits of the pointer as encoding the key's
 * location and length.  This breaks if allocated memory isn't aligned,
 * of course.
 *
 * In this specific case, we use bit 0x01 to mark an on-page key, else
 * it's a WT_IKEY reference.  The bit pattern for internal row-store
 * on-page keys is:
 *	32 bits		key length
 *	31 bits		page offset of the key's bytes,
 *	 1 bits		flags
 */
#define WT_IK_FLAG 0x01
#define WT_IK_ENCODE_KEY_LEN(v) ((uintptr_t)(v) << 32)
#define WT_IK_DECODE_KEY_LEN(v) ((v) >> 32)
#define WT_IK_ENCODE_KEY_OFFSET(v) ((uintptr_t)(v) << 1)
#define WT_IK_DECODE_KEY_OFFSET(v) (((v)&0xFFFFFFFF) >> 1)
    v = (uintptr_t)ref->ref_ikey;
    if (v & WT_IK_FLAG) {
        *(void **)keyp = WT_PAGE_REF_OFFSET(page, WT_IK_DECODE_KEY_OFFSET(v));
        *sizep = WT_IK_DECODE_KEY_LEN(v);
    } else {
        *(void **)keyp = WT_IKEY_DATA(ref->ref_ikey);
        *sizep = ((WT_IKEY *)ref->ref_ikey)->size;
    }
}

/*
 * __wt_ref_key_onpage_set --
 *     Set a WT_REF to reference an on-page key.
 */
static inline void
__wt_ref_key_onpage_set(WT_PAGE *page, WT_REF *ref, WT_CELL_UNPACK_ADDR *unpack)
{
    uintptr_t v;

    /*
     * See the comment in __wt_ref_key for an explanation of the magic.
     */
    v = WT_IK_ENCODE_KEY_LEN(unpack->size) |
      WT_IK_ENCODE_KEY_OFFSET(WT_PAGE_DISK_OFFSET(page, unpack->data)) | WT_IK_FLAG;
    ref->ref_ikey = (void *)v;
}

/*
 * __wt_ref_key_instantiated --
 *     Return if a WT_REF key is instantiated.
 */
static inline WT_IKEY *
__wt_ref_key_instantiated(WT_REF *ref)
{
    uintptr_t v;

    /*
     * See the comment in __wt_ref_key for an explanation of the magic.
     */
    v = (uintptr_t)ref->ref_ikey;
    return (v & WT_IK_FLAG ? NULL : (WT_IKEY *)ref->ref_ikey);
}

/*
 * __wt_ref_key_clear --
 *     Clear a WT_REF key.
 */
static inline void
__wt_ref_key_clear(WT_REF *ref)
{
    /*
     * The key union has 2 8B fields; this is equivalent to:
     *
     *	ref->ref_recno = WT_RECNO_OOB;
     *	ref->ref_ikey = NULL;
     */
    ref->ref_recno = 0;
}

/*
 * __wt_row_leaf_key_info --
 *     Return a row-store leaf page key referenced by a WT_ROW if it can be had without unpacking a
 *     cell, and information about the cell, if the key isn't cheaply available.
 */
static inline void
__wt_row_leaf_key_info(WT_PAGE *page, void *copy, WT_IKEY **ikeyp, WT_CELL **cellp, void *datap,
  size_t *sizep, uint8_t *prefixp)
{
    WT_IKEY *ikey;
    uintptr_t v;

    v = (uintptr_t)copy;

    /*
     * A row-store leaf page key is in one of two places: if instantiated, the WT_ROW pointer
     * references a WT_IKEY structure, otherwise, it references an on-page item. Further, on-page
     * items are in one of two states: if the key is a simple key (not an overflow key, which is
     * likely), the key's offset, size and prefix is encoded in the 8B of pointer. Otherwise, the
     * offset is to the key's on-page cell.
     *
     * This function returns information from a set of things about the key (WT_IKEY reference, cell
     * reference and/or key/length/prefix triplet). Our callers know the order we resolve items and
     * what information will be returned. Specifically, the caller gets a key (in the form of a
     * pointer to the bytes, a length and a prefix length in all cases where we can get it without
     * unpacking a cell), plus an optional WT_IKEY reference, and in all cases, a pointer to the
     * on-page cell. Our caller's test is generally if there is a returned key or not, falling back
     * to the returned cell.
     *
     * Now the magic: allocated memory must be aligned to store any standard type and we expect some
     * standard type to require at least quad-byte alignment, so allocated memory should have two
     * clear low-order bits. On-page objects consist of an offset/length pair and a prefix in the
     * case of a key: the maximum page size is 29 bits (512MB), the remaining bits hold the key or
     * value location and bytes. This breaks if allocated memory isn't aligned, of course.
     *
     * In this specific case, we use bit 0x01 to mark an on-page cell, bit 0x02 to mark an on-page
     * key, 0x03 to mark an on-page key/value pair, otherwise it's a WT_IKEY reference. The bit
     * pattern for on-page cells is:
     *
     *  29 bits		offset of the key's cell (512MB)
     *   2 bits		0x01 flag
     *
     * The on-page cell is our fallback: if a key or value won't fit into our encoding (unlikely,
     * but possible), we fall back to using a cell reference, which obviously has enough room for
     * all possible values.
     *
     * The next encoding is for on-page keys:
     *
     *  19 bits		key's length (512KB)
     *   6 bits		offset of the key's bytes from the key's cell (32B)
     *   8 bits		key's prefix length (256B, the maximum possible value)
     *  29 bits		offset of the key's cell (512MB)
     *   2 bits		0x02 flag
     *
     * But, while that allows us to skip decoding simple key cells, we also want to skip decoding
     * value cells in the case where the value cell is also simple/short. We use bit 0x03 to mark
     * an encoded on-page key and value pair. The encoding for on-page key/value pairs is:
     *
     *  13 bits		value's length (8KB)
     *   6 bits		offset of the value's bytes from the end of the key's cell (32B)
     *  12 bits		key's length (4KB)
     *   6 bits		offset of the key's bytes from the key's cell (32B)
     *   8 bits		key's prefix length (256B, the maximum possible value)
     *  17 bits		offset of the key's cell (128KB)
     *   2 bits		0x03 flag
     *
     * A reason for the complexity here is we need to be able to find the key and value cells from
     * the encoded form: for that reason we store an offset to the key cell plus a second offset to
     * the start of the key's bytes. Finding the value cell is reasonably straight-forward, we use
     * the location of the key to find the cell immediately following the key.
     *
     * A simple extension of this encoding would be to encode zero-length values similarly to how we
     * encode short values. However, zero-length values are noted by adjacent key cells on the page,
     * and we detect that without decoding the second cell by checking the cell's type byte. Tests
     * indicate it's slightly slower to encode missing value cells than to check the cell type, so
     * we don't bother with the encoding.
     *
     * Generally, the bitfields are expected to be larger than the stored items (4/8KB keys/values,
     * 128KB pages), but the underlying limits are larger and we can see items we cannot encode in
     * this way.  For example, if an application creates pages larger than 128KB, encoded key/value
     * offsets after the maximum offset (the offsets of cells at the end of the page), couldn't be
     * encoded. If that's not working, these bit patterns can be changed as they are in-memory only
     * (we could even tune for specific workloads in specific trees).
     */
#define WT_KEY_FLAG_BITS 0x03

#define WT_CELL_FLAG 0x01
/* key cell offset field size can hold maximum value, WT_CELL_MAX_KEY_CELL_OFFSET not needed. */
#define WT_CELL_ENCODE_OFFSET(v) ((uintptr_t)(v) << 2)
#define WT_CELL_DECODE_OFFSET(v) ((v) >> 2)

#define WT_K_FLAG 0x02
#define WT_K_MAX_KEY_LEN (0x80000 - 1)
#define WT_K_DECODE_KEY_LEN(v) (((v)&0xffffe00000000000) >> 45)
#define WT_K_ENCODE_KEY_LEN(v) ((uintptr_t)(v) << 45)
#define WT_K_MAX_KEY_OFFSET (0x40 - 1)
#define WT_K_DECODE_KEY_OFFSET(v) (((v)&0x001f8000000000) >> 39)
#define WT_K_ENCODE_KEY_OFFSET(v) ((uintptr_t)(v) << 39)
/* Key prefix field size can hold maximum value, WT_K_MAX_KEY_PREFIX not needed. */
#define WT_K_DECODE_KEY_PREFIX(v) (((v)&0x00007f80000000) >> 31)
#define WT_K_ENCODE_KEY_PREFIX(v) ((uintptr_t)(v) << 31)
/* Key cell offset field size can hold maximum value, WT_K_MAX_KEY_CELL_OFFSET not needed. */
#define WT_K_DECODE_KEY_CELL_OFFSET(v) (((v)&0x0000007ffffffc) >> 2)
#define WT_K_ENCODE_KEY_CELL_OFFSET(v) ((uintptr_t)(v) << 2)

#define WT_KV_FLAG 0x03
#define WT_KV_MAX_VALUE_LEN (0x2000 - 1)
#define WT_KV_DECODE_VALUE_LEN(v) (((v)&0xfff8000000000000) >> 51)
#define WT_KV_ENCODE_VALUE_LEN(v) ((uintptr_t)(v) << 51)
#define WT_KV_MAX_VALUE_OFFSET (0x40 - 1)
#define WT_KV_DECODE_VALUE_OFFSET(v) (((v)&0x07e00000000000) >> 45)
#define WT_KV_ENCODE_VALUE_OFFSET(v) ((uintptr_t)(v) << 45)
#define WT_KV_MAX_KEY_LEN (0x1000 - 1)
#define WT_KV_DECODE_KEY_LEN(v) (((v)&0x001ffe00000000) >> 33)
#define WT_KV_ENCODE_KEY_LEN(v) ((uintptr_t)(v) << 33)
/* Key offset encoding is the same for key and key/value forms, WT_KV_MAX_KEY_OFFSET not needed. */
#define WT_KV_DECODE_KEY_OFFSET(v) (((v)&0x000001f8000000) >> 27)
#define WT_KV_ENCODE_KEY_OFFSET(v) ((uintptr_t)(v) << 27)
/* Key prefix encoding is the same for key and key/value forms, WT_KV_MAX_KEY_PREFIX not needed. */
#define WT_KV_DECODE_KEY_PREFIX(v) (((v)&0x00000007f80000) >> 19)
#define WT_KV_ENCODE_KEY_PREFIX(v) ((uintptr_t)(v) << 19)
#define WT_KV_MAX_KEY_CELL_OFFSET (0x20000 - 1)
#define WT_KV_DECODE_KEY_CELL_OFFSET(v) (((v)&0x0000000007fffc) >> 2)
#define WT_KV_ENCODE_KEY_CELL_OFFSET(v) ((uintptr_t)(v) << 2)

    switch (v & WT_KEY_FLAG_BITS) {
    case WT_CELL_FLAG: /* On-page cell. */
        if (ikeyp != NULL)
            *ikeyp = NULL;
        if (cellp != NULL)
            *cellp = (WT_CELL *)WT_PAGE_REF_OFFSET(page, WT_CELL_DECODE_OFFSET(v));
        if (datap != NULL) {
            *(void **)datap = NULL;
            *sizep = 0;
            *prefixp = 0;
        }
        break;
    case WT_K_FLAG: /* Encoded key. */
        if (ikeyp != NULL)
            *ikeyp = NULL;
        if (cellp != NULL)
            *cellp = (WT_CELL *)WT_PAGE_REF_OFFSET(page, WT_K_DECODE_KEY_CELL_OFFSET(v));
        if (datap != NULL) {
            *(void **)datap =
              WT_PAGE_REF_OFFSET(page, WT_K_DECODE_KEY_CELL_OFFSET(v) + WT_K_DECODE_KEY_OFFSET(v));
            *sizep = WT_K_DECODE_KEY_LEN(v);
            *prefixp = (uint8_t)WT_K_DECODE_KEY_PREFIX(v);
        }
        break;
    case WT_KV_FLAG: /* Encoded key/value pair. */
        if (ikeyp != NULL)
            *ikeyp = NULL;
        if (cellp != NULL)
            *cellp = (WT_CELL *)WT_PAGE_REF_OFFSET(page, WT_KV_DECODE_KEY_CELL_OFFSET(v));
        if (datap != NULL) {
            *(void **)datap = WT_PAGE_REF_OFFSET(
              page, WT_KV_DECODE_KEY_CELL_OFFSET(v) + WT_KV_DECODE_KEY_OFFSET(v));
            *sizep = WT_KV_DECODE_KEY_LEN(v);
            *prefixp = (uint8_t)WT_KV_DECODE_KEY_PREFIX(v);
        }
        break;
    default: /* Instantiated key. */
        ikey = (WT_IKEY *)copy;
        if (ikeyp != NULL)
            *ikeyp = ikey;
        if (cellp != NULL)
            *cellp = ikey->cell_offset == 0 ?
              NULL :
              (WT_CELL *)WT_PAGE_REF_OFFSET(page, ikey->cell_offset);
        if (datap != NULL) {
            *(void **)datap = WT_IKEY_DATA(ikey);
            *sizep = ikey->size;
            *prefixp = 0;
        }
        break;
    }
}

/*
 * __wt_row_leaf_key_set --
 *     Set a WT_ROW to reference an on-page row-store leaf key.
 */
static inline void
__wt_row_leaf_key_set(WT_PAGE *page, WT_ROW *rip, WT_CELL_UNPACK_KV *unpack)
{
    uintptr_t key_offset, v;

    /*
     * See the comment in __wt_row_leaf_key_info for an explanation of the magic.
     *
     * Not checking the prefix and cell offset sizes, the fields hold any legitimate value.
     */
    key_offset = (uintptr_t)WT_PTRDIFF(unpack->data, unpack->cell);
    if (unpack->type != WT_CELL_KEY || key_offset > WT_K_MAX_KEY_OFFSET ||
      unpack->size > WT_K_MAX_KEY_LEN)
        v = WT_CELL_ENCODE_OFFSET(WT_PAGE_DISK_OFFSET(page, unpack->cell)) | WT_CELL_FLAG;
    else
        v = WT_K_ENCODE_KEY_CELL_OFFSET(WT_PAGE_DISK_OFFSET(page, unpack->cell)) |
          WT_K_ENCODE_KEY_PREFIX(unpack->prefix) | WT_K_ENCODE_KEY_OFFSET(key_offset) |
          WT_K_ENCODE_KEY_LEN(unpack->size) | WT_K_FLAG;

    WT_ROW_KEY_SET(rip, v);
}

/*
 * __wt_row_leaf_value_set --
 *     Set a WT_ROW to reference an on-page row-store leaf key and value pair, if possible.
 */
static inline void
__wt_row_leaf_value_set(WT_ROW *rip, WT_CELL_UNPACK_KV *unpack)
{
    uintptr_t value_offset, value_size, v;

    /* The row-store key can change underfoot; explicitly take a copy. */
    v = (uintptr_t)WT_ROW_KEY_COPY(rip);

    /*
     * See the comment in __wt_row_leaf_key_info for an explanation of the magic.
     *
     * Only encoded keys can be upgraded to encoded key/value pairs.
     */
    if ((v & WT_KEY_FLAG_BITS) != WT_K_FLAG)
        return;

    if (WT_K_DECODE_KEY_CELL_OFFSET(v) > WT_KV_MAX_KEY_CELL_OFFSET) /* Key cell offset */
        return;
    /*
     * Not checking the prefix size, the field sizes are the same in both encodings.
     *
     * Not checking the key offset, the field sizes are the same in both encodings.
     */
    if (WT_K_DECODE_KEY_LEN(v) > WT_KV_MAX_KEY_LEN) /* Key len */
        return;

    value_offset = (uintptr_t)WT_PTRDIFF(unpack->data, unpack->cell);
    if (value_offset > WT_KV_MAX_VALUE_OFFSET) /* Value offset */
        return;
    value_size = unpack->size;
    if (value_size > WT_KV_MAX_VALUE_LEN) /* Value length */
        return;

    v = WT_KV_ENCODE_KEY_CELL_OFFSET(WT_K_DECODE_KEY_CELL_OFFSET(v)) |
      WT_KV_ENCODE_KEY_PREFIX(WT_K_DECODE_KEY_PREFIX(v)) |
      WT_KV_ENCODE_KEY_OFFSET(WT_K_DECODE_KEY_OFFSET(v)) |
      WT_KV_ENCODE_KEY_LEN(WT_K_DECODE_KEY_LEN(v)) | WT_KV_ENCODE_VALUE_OFFSET(value_offset) |
      WT_KV_ENCODE_VALUE_LEN(value_size) | WT_KV_FLAG;
    WT_ROW_KEY_SET(rip, v);
}

/*
 * __wt_row_leaf_key_free --
 *     Discard any memory allocated for an instantiated key.
 */
static inline void
__wt_row_leaf_key_free(WT_SESSION_IMPL *session, WT_PAGE *page, WT_ROW *rip)
{
    WT_IKEY *ikey;
    void *copy;

    /* The row-store key can change underfoot; explicitly take a copy. */
    copy = WT_ROW_KEY_COPY(rip);

    /*
     * If the key was a WT_IKEY allocation (that is, if it points somewhere other than the original
     * page), free the memory.
     */
    __wt_row_leaf_key_info(page, copy, &ikey, NULL, NULL, NULL, NULL);
    __wt_free(session, ikey);
}

/*
 * __wt_row_leaf_key --
 *     Set a buffer to reference a row-store leaf page key as cheaply as possible.
 */
static inline int
__wt_row_leaf_key(
  WT_SESSION_IMPL *session, WT_PAGE *page, WT_ROW *rip, WT_ITEM *key, bool instantiate)
{
    WT_CELL *cell;
    size_t group_size, key_size;
    uint32_t slot;
    uint8_t group_prefix, key_prefix;
    void *copy;
    const void *group_key, *key_data;

    /*
     * A front-end for __wt_row_leaf_key_work, here to inline fast paths.
     *
     * The row-store key can change underfoot; explicitly take a copy.
     */
    copy = WT_ROW_KEY_COPY(rip);

    /*
     * Handle keys taken directly from the disk image (which should be a common case), instantiated
     * keys (rare initially, but possibly more common as leaf page search instantiates keys), and
     * keys built using the most-used page key prefix.
     *
     * The most-used page key prefix: the longest group of compressed key prefixes on the page that
     * can be built from a single, fully instantiated key on the page, was tracked when the page was
     * read. Build keys in that group by appending the key's bytes to the root key from which it was
     * compressed.
     */
    __wt_row_leaf_key_info(page, copy, NULL, &cell, &key_data, &key_size, &key_prefix);
    if (key_data != NULL && key_prefix == 0) {
        key->data = key_data;
        key->size = key_size;
        return (0);
    }
    slot = WT_ROW_SLOT(page, rip);
    if (key_data != NULL && slot > page->prefix_start && slot <= page->prefix_stop) {
        /* The row-store key can change underfoot; explicitly take a copy. */
        copy = WT_ROW_KEY_COPY(&page->pg_row[page->prefix_start]);
        __wt_row_leaf_key_info(page, copy, NULL, NULL, &group_key, &group_size, &group_prefix);
        if (group_key != NULL) {
            WT_RET(__wt_buf_init(session, key, key_prefix + key_size));
            memcpy(key->mem, group_key, key_prefix);
            memcpy((uint8_t *)key->mem + key_prefix, key_data, key_size);
            key->size = key_prefix + key_size;
            return (0);
        }
    }

    /*
     * The alternative is an on-page cell with some kind of compressed or overflow key that's never
     * been instantiated. Call the underlying worker function to figure it out.
     */
    return (__wt_row_leaf_key_work(session, page, rip, key, instantiate));
}

/*
 * __wt_row_leaf_key_instantiate --
 *     Instantiate the keys on a leaf page as needed.
 */
static inline int
__wt_row_leaf_key_instantiate(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_CELL *cell;
    WT_DECL_ITEM(key);
    WT_DECL_RET;
    WT_ROW *rip;
    size_t key_size;
    uint32_t i, slot;
    uint8_t key_prefix;
    u_int skip;
    void *copy;
    const void *key_data;

    /*
     * Cursor previous traversals will be too slow in the case of a set of prefix-compressed keys
     * requiring long roll-forward processing. In the worst case, each key would require processing
     * every key appearing before it on the page as we walk backwards through the page. If we're
     * doing a cursor previous call, and this page has never been checked for excessively long
     * stretches of prefix-compressed keys, do it now.
     */
    if (F_ISSET_ATOMIC(page, WT_PAGE_BUILD_KEYS))
        return (0);
    F_SET_ATOMIC(page, WT_PAGE_BUILD_KEYS);

    /* Walk the keys, making sure there's something easy to work with periodically. */
    skip = 0;
    WT_ROW_FOREACH (page, rip, i) {
        /*
         * Get the key's information. The row-store key can change underfoot; explicitly take a
         * copy.
         */
        copy = WT_ROW_KEY_COPY(rip);
        __wt_row_leaf_key_info(page, copy, NULL, &cell, &key_data, &key_size, &key_prefix);

        /*
         * If the key isn't prefix compressed, or is a prefix-compressed key we can derive from the
         * group record, we're done.
         */
        slot = WT_ROW_SLOT(page, rip);
        if (key_data != NULL &&
          (key_prefix == 0 || (slot > page->prefix_start && slot <= page->prefix_stop))) {
            skip = 0;
            continue;
        }

        /*
         * Skip overflow keys: we'll instantiate them on demand and they don't require any special
         * processing (but they don't help with long strings of prefix compressed keys, either, so
         * we'll likely want to instantiate the first key we find after a long stretch of overflow
         * keys). More importantly, we don't want to instantiate them for a cursor traversal, we
         * only want to instantiate them for a tree search, as that's likely to happen repeatedly.
         */
        if (__wt_cell_type(cell) == WT_CELL_KEY_OVFL) {
            ++skip;
            continue;
        }

        /*
         * If we skip 10 keys, instantiate one, limiting how far we're forced to roll backward. (The
         * value 10 was chosen for no particular reason.) There are still cases where we might not
         * need to instantiate this key (for example, a key too large to be encoded, but still
         * on-page and not prefix-compressed). Let the underlying worker function figure that out,
         * we should have found the vast majority of cases by now.
         */
        if (++skip >= 10) {
            if (key == NULL)
                WT_ERR(__wt_scr_alloc(session, 0, &key));
            WT_ERR(__wt_row_leaf_key(session, page, rip, key, true));
            skip = 0;
        }
    }

err:
    __wt_scr_free(session, &key);
    return (ret);
}

/*
 * __wt_row_leaf_value_is_encoded --
 *     Return if the value for a row-store leaf page is an encoded key/value pair.
 */
static inline bool
__wt_row_leaf_value_is_encoded(WT_ROW *rip)
{
    uintptr_t v;

    /* The row-store key can change underfoot; explicitly take a copy. */
    v = (uintptr_t)WT_ROW_KEY_COPY(rip);

    /*
     * See the comment in __wt_row_leaf_key_info for an explanation of the magic.
     */
    return ((v & WT_KEY_FLAG_BITS) == WT_KV_FLAG);
}

/*
 * __wt_row_leaf_value --
 *     Return the value for a row-store leaf page encoded key/value pair.
 */
static inline bool
__wt_row_leaf_value(WT_PAGE *page, WT_ROW *rip, WT_ITEM *value)
{
    uintptr_t v;

    /* The row-store key can change underfoot; explicitly take a copy. */
    v = (uintptr_t)WT_ROW_KEY_COPY(rip);

    if ((v & WT_KEY_FLAG_BITS) == WT_KV_FLAG) {
        /*
         * See the comment in __wt_row_leaf_key_info for an explanation of the magic.
         *
         * Normally a value is represented by the value's cell in the disk image (or an update), but
         * there is a fast path for returning a simple value, where it's worth the additional effort
         * of encoding the value in the per-row reference and retrieving it. This function does that
         * work, while most value retrieval goes through the "return the unpacked cell" version.
         *
         * The value's data is the page offset of the key's cell, plus the key's offset, plus the
         * key's size, plus the value's offset: in other words, we know where the key's cell starts,
         * the key's data ends the key's cell, and the value cell immediately follows, Skip past the
         * key cell to the value cell, then skip to the start of the value's data.
         */
        value->data = (uint8_t *)WT_PAGE_REF_OFFSET(page, WT_KV_DECODE_KEY_CELL_OFFSET(v)) +
          WT_KV_DECODE_KEY_OFFSET(v) + WT_KV_DECODE_KEY_LEN(v) + WT_KV_DECODE_VALUE_OFFSET(v);
        value->size = WT_KV_DECODE_VALUE_LEN(v);
        return (true);
    }
    return (false);
}

/*
 * __wt_row_leaf_value_cell --
 *     Return the unpacked value for a row-store leaf page key.
 */
static inline void
__wt_row_leaf_value_cell(
  WT_SESSION_IMPL *session, WT_PAGE *page, WT_ROW *rip, WT_CELL_UNPACK_KV *vpack)
{
    WT_CELL *kcell, *vcell;
    WT_CELL_UNPACK_KV unpack;
    WT_IKEY *ikey;
    uintptr_t v;

    /* The row-store key can change underfoot; explicitly take a copy. */
    v = (uintptr_t)WT_ROW_KEY_COPY(rip);

    kcell = vcell = NULL;
    switch (v & WT_KEY_FLAG_BITS) {
    case WT_CELL_FLAG:
        /* We have a direct reference the key's cell, step past it to the value's cell. */
        kcell = (WT_CELL *)WT_PAGE_REF_OFFSET(page, WT_CELL_DECODE_OFFSET(v));
        break;
    case WT_K_FLAG:
        /* We have an encoded on-page key, the value's cell follows the key's data. */
        vcell = (WT_CELL *)((uint8_t *)WT_PAGE_REF_OFFSET(page, WT_K_DECODE_KEY_CELL_OFFSET(v)) +
          WT_K_DECODE_KEY_OFFSET(v) + WT_K_DECODE_KEY_LEN(v));
        break;
    case WT_KV_FLAG:
        /* We have an encoded on-page key/value pair, the value's cell follows the key's data. */
        vcell = (WT_CELL *)((uint8_t *)WT_PAGE_REF_OFFSET(page, WT_KV_DECODE_KEY_CELL_OFFSET(v)) +
          WT_KV_DECODE_KEY_OFFSET(v) + WT_KV_DECODE_KEY_LEN(v));
        break;
    default:
        /* We have an instantiated key, the key cell's offset is included in the structure. */
        ikey = (WT_IKEY *)v;
        kcell =
          ikey->cell_offset == 0 ? NULL : (WT_CELL *)WT_PAGE_REF_OFFSET(page, ikey->cell_offset);
        break;
    }

    /* If we only have the key cell, unpack it and skip past it to the value cell. */
    if (vcell == NULL) {
        __wt_cell_unpack_kv(session, page->dsk, kcell, &unpack);
        vcell = (WT_CELL *)((uint8_t *)unpack.cell + __wt_cell_total_len(&unpack));
    }

    __wt_cell_unpack_kv(session, page->dsk, __wt_cell_leaf_value_parse(page, vcell), vpack);
}

/*
 * __wt_ref_addr_copy --
 *     Return a copy of the WT_REF address information.
 */
static inline bool
__wt_ref_addr_copy(WT_SESSION_IMPL *session, WT_REF *ref, WT_ADDR_COPY *copy)
{
    WT_ADDR *addr;
    WT_CELL_UNPACK_ADDR *unpack, _unpack;
    WT_PAGE *page;

    unpack = &_unpack;
    page = ref->home;

    /*
     * To look at an on-page cell, we need to look at the parent page's disk image, and that can be
     * dangerous. The problem is if the parent page splits, deepening the tree. As part of that
     * process, the WT_REF WT_ADDRs pointing into the parent's disk image are copied into off-page
     * WT_ADDRs and swapped into place. The content of the two WT_ADDRs are identical, and we don't
     * care which version we get as long as we don't mix-and-match the two.
     */
    WT_ORDERED_READ(addr, (WT_ADDR *)ref->addr);

    /* If NULL, there is no information. */
    if (addr == NULL)
        return (false);

    /* If off-page, the pointer references a WT_ADDR structure. */
    if (__wt_off_page(page, addr)) {
        WT_TIME_AGGREGATE_COPY(&copy->ta, &addr->ta);
        copy->type = addr->type;
        memcpy(copy->addr, addr->addr, copy->size = addr->size);
        return (true);
    }

    /* If on-page, the pointer references a cell. */
    __wt_cell_unpack_addr(session, page->dsk, (WT_CELL *)addr, unpack);
    WT_TIME_AGGREGATE_COPY(&copy->ta, &unpack->ta);
    copy->type = 0; /* Avoid static analyzer uninitialized value complaints. */
    switch (unpack->raw) {
    case WT_CELL_ADDR_INT:
        copy->type = WT_ADDR_INT;
        break;
    case WT_CELL_ADDR_LEAF:
        copy->type = WT_ADDR_LEAF;
        break;
    case WT_CELL_ADDR_LEAF_NO:
        copy->type = WT_ADDR_LEAF_NO;
        break;
    }
    memcpy(copy->addr, unpack->data, copy->size = (uint8_t)unpack->size);
    return (true);
}

/*
 * __wt_ref_block_free --
 *     Free the on-disk block for a reference and clear the address.
 */
static inline int
__wt_ref_block_free(WT_SESSION_IMPL *session, WT_REF *ref)
{
    WT_ADDR_COPY addr;

    if (!__wt_ref_addr_copy(session, ref, &addr))
        return (0);

    WT_RET(__wt_btree_block_free(session, addr.addr, addr.size));

    /* Clear the address (so we don't free it twice). */
    __wt_ref_addr_free(session, ref);
    return (0);
}

/*
 * __wt_page_del_active --
 *     Return if a truncate operation is active.
 */
static inline bool
__wt_page_del_active(WT_SESSION_IMPL *session, WT_REF *ref, bool visible_all)
{
    WT_PAGE_DELETED *page_del;
    uint8_t prepare_state;

    WT_ASSERT(session, ref->state == WT_REF_LOCKED);

    if ((page_del = ref->ft_info.del) == NULL)
        return (false);
    if (page_del->txnid == WT_TXN_ABORTED)
        return (false);
    WT_ORDERED_READ(prepare_state, page_del->prepare_state);
    if (prepare_state == WT_PREPARE_INPROGRESS || prepare_state == WT_PREPARE_LOCKED)
        return (true);
    return (visible_all ? !__wt_txn_visible_all(session, page_del->txnid, page_del->timestamp) :
                          !__wt_txn_visible(session, page_del->txnid, page_del->timestamp));
}

/*
 * __wt_btree_can_evict_dirty --
 *     Check whether eviction of dirty pages or splits are permitted in the current tree. We cannot
 *     evict dirty pages or split while a checkpoint is in progress, unless the checkpoint thread is
 *     doing the work. Also, during connection close, if we take a checkpoint as of a timestamp,
 *     eviction should not write dirty pages to avoid updates newer than the checkpoint timestamp
 *     leaking to disk.
 */
static inline bool
__wt_btree_can_evict_dirty(WT_SESSION_IMPL *session)
{
    WT_BTREE *btree;

    btree = S2BT(session);
    return ((!WT_BTREE_SYNCING(btree) || WT_SESSION_BTREE_SYNC(session)) &&
      !F_ISSET(S2C(session), WT_CONN_CLOSING_TIMESTAMP));
}

/*
 * __wt_leaf_page_can_split --
 *     Check whether a page can be split in memory.
 */
static inline bool
__wt_leaf_page_can_split(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_BTREE *btree;
    WT_INSERT *ins;
    WT_INSERT_HEAD *ins_head;
    size_t size;
    int count;

    btree = S2BT(session);

    /*
     * Checkpoints can't do in-memory splits in the tree they are walking: that can lead to
     * corruption when the parent internal page is updated.
     */
    if (WT_SESSION_BTREE_SYNC(session))
        return (false);

    /*
     * Only split a page once, otherwise workloads that update in the middle of the page could
     * continually split without benefit.
     */
    if (F_ISSET_ATOMIC(page, WT_PAGE_SPLIT_INSERT))
        return (false);

    /*
     * Check for pages with append-only workloads. A common application pattern is to have multiple
     * threads frantically appending to the tree. We want to reconcile and evict this page, but we'd
     * like to do it without making the appending threads wait. See if it's worth doing a split to
     * let the threads continue before doing eviction.
     *
     * Ignore anything other than large, dirty leaf pages. We depend on the page being dirty for
     * correctness (the page must be reconciled again before being evicted after the split,
     * information from a previous reconciliation will be wrong, so we can't evict immediately).
     */
    if (page->memory_footprint < btree->splitmempage)
        return (false);
    if (WT_PAGE_IS_INTERNAL(page))
        return (false);
    if (!__wt_page_is_modified(page))
        return (false);

    /*
     * There is no point doing an in-memory split unless there is a lot of data in the last skiplist
     * on the page. Split if there are enough items and the skiplist does not fit within a single
     * disk page.
     */
    ins_head = page->type == WT_PAGE_ROW_LEAF ?
      (page->entries == 0 ? WT_ROW_INSERT_SMALLEST(page) :
                            WT_ROW_INSERT_SLOT(page, page->entries - 1)) :
      WT_COL_APPEND(page);
    if (ins_head == NULL)
        return (false);

/*
 * In the extreme case, where the page is much larger than the maximum size, split as soon as there
 * are 5 items on the page.
 */
#define WT_MAX_SPLIT_COUNT 5
    if (page->memory_footprint > (size_t)btree->maxleafpage * 2) {
        for (count = 0, ins = ins_head->head[0]; ins != NULL; ins = ins->next[0]) {
            if (++count < WT_MAX_SPLIT_COUNT)
                continue;

            WT_STAT_CONN_DATA_INCR(session, cache_inmem_splittable);
            return (true);
        }

        return (false);
    }

/*
 * Rather than scanning the whole list, walk a higher level, which gives a sample of the items -- at
 * level 0 we have all the items, at level 1 we have 1/4 and at level 2 we have 1/16th. If we see
 * more than 30 items and more data than would fit in a disk page, split.
 */
#define WT_MIN_SPLIT_DEPTH 2
#define WT_MIN_SPLIT_COUNT 30
#define WT_MIN_SPLIT_MULTIPLIER 16 /* At level 2, we see 1/16th entries */

    for (count = 0, size = 0, ins = ins_head->head[WT_MIN_SPLIT_DEPTH]; ins != NULL;
         ins = ins->next[WT_MIN_SPLIT_DEPTH]) {
        count += WT_MIN_SPLIT_MULTIPLIER;
        size += WT_MIN_SPLIT_MULTIPLIER * (WT_INSERT_KEY_SIZE(ins) + WT_UPDATE_MEMSIZE(ins->upd));
        if (count > WT_MIN_SPLIT_COUNT && size > (size_t)btree->maxleafpage) {
            WT_STAT_CONN_DATA_INCR(session, cache_inmem_splittable);
            return (true);
        }
    }
    return (false);
}

/*
 * __wt_page_evict_retry --
 *     Avoid busy-spinning attempting to evict the same page all the time.
 */
static inline bool
__wt_page_evict_retry(WT_SESSION_IMPL *session, WT_PAGE *page)
{
    WT_PAGE_MODIFY *mod;
    WT_TXN_GLOBAL *txn_global;
    wt_timestamp_t pinned_ts;

    txn_global = &S2C(session)->txn_global;

    /*
     * If the page hasn't been through one round of update/restore, give it a try.
     */
    if ((mod = page->modify) == NULL || !FLD_ISSET(mod->restore_state, WT_PAGE_RS_RESTORED))
        return (true);

    /*
     * Retry if a reasonable amount of eviction time has passed, the choice of 5 eviction passes as
     * a reasonable amount of time is currently pretty arbitrary.
     */
    if (__wt_cache_aggressive(session) ||
      mod->last_evict_pass_gen + 5 < S2C(session)->cache->evict_pass_gen)
        return (true);

    /* Retry if the global transaction state has moved forward. */
    if (txn_global->current == txn_global->oldest_id ||
      mod->last_eviction_id != __wt_txn_oldest_id(session))
        return (true);

    /*
     * It is possible that we have not started using the timestamps just yet. So, check for the last
     * time we evicted only if there is a timestamp set.
     */
    if (mod->last_eviction_timestamp != WT_TS_NONE) {
        __wt_txn_pinned_timestamp(session, &pinned_ts);
        if (pinned_ts > mod->last_eviction_timestamp)
            return (true);
    }

    return (false);
}

/*
 * __wt_page_can_evict --
 *     Check whether a page can be evicted.
 */
static inline bool
__wt_page_can_evict(WT_SESSION_IMPL *session, WT_REF *ref, bool *inmem_splitp)
{
    WT_PAGE *page;
    WT_PAGE_MODIFY *mod;
    bool modified;

    if (inmem_splitp != NULL)
        *inmem_splitp = false;

    page = ref->page;
    mod = page->modify;

    /* Never modified pages can always be evicted. */
    if (mod == NULL)
        return (true);

    /*
     * If a fast-truncate page is subsequently instantiated, it can become an eviction candidate. If
     * the fast-truncate itself has not resolved when the page is instantiated, a list of updates is
     * created, which will be discarded as part of transaction resolution. Don't attempt to evict a
     * fast-truncate page until any update list has been removed.
     */
    if (ref->ft_info.update != NULL)
        return (false);

    /*
     * We can't split or evict multiblock row-store pages where the parent's key for the page is an
     * overflow item, because the split into the parent frees the backing blocks for any
     * no-longer-used overflow keys, which will corrupt the checkpoint's block management.
     */
    if (!__wt_btree_can_evict_dirty(session) && F_ISSET_ATOMIC(ref->home, WT_PAGE_OVERFLOW_KEYS)) {
        WT_STAT_CONN_INCR(session, cache_eviction_fail_parent_has_overflow_items);
        return (false);
    }

    /*
     * Check for in-memory splits before other eviction tests. If the page should split in-memory,
     * return success immediately and skip more detailed eviction tests. We don't need further tests
     * since the page won't be written or discarded from the cache.
     */
    if (__wt_leaf_page_can_split(session, page)) {
        if (inmem_splitp != NULL)
            *inmem_splitp = true;
        return (true);
    }

    modified = __wt_page_is_modified(page);

    /*
     * If the file is being checkpointed, other threads can't evict dirty pages: if a page is
     * written and the previous version freed, that previous version might be referenced by an
     * internal page already written in the checkpoint, leaving the checkpoint inconsistent.
     */
    if (modified && !__wt_btree_can_evict_dirty(session)) {
        WT_STAT_CONN_DATA_INCR(session, cache_eviction_checkpoint);
        return (false);
    }

    /*
     * Check we are not evicting an accessible internal page with an active split generation.
     *
     * If a split created new internal pages, those newly created internal pages cannot be evicted
     * until all threads are known to have exited the original parent page's index, because evicting
     * an internal page discards its WT_REF array, and a thread traversing the original parent page
     * index might see a freed WT_REF.
     *
     * One special case where we know this is safe is if the handle is dead or locked exclusively,
     * that is, no readers can be looking at an old index.
     */
    if (F_ISSET(ref, WT_REF_FLAG_INTERNAL) &&
      !F_ISSET(session->dhandle, WT_DHANDLE_DEAD | WT_DHANDLE_EXCLUSIVE) &&
      __wt_gen_active(session, WT_GEN_SPLIT, page->pg_intl_split_gen))
        return (false);

    /* If the metadata page is clean but has modifications that appear too new to evict, skip it. */
    if (WT_IS_METADATA(S2BT(session)->dhandle) && !modified &&
      !__wt_txn_visible_all(session, mod->rec_max_txn, mod->rec_max_timestamp))
        return (false);

    return (true);
}

/*
 * __wt_page_release --
 *     Release a reference to a page.
 */
static inline int
__wt_page_release(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t flags)
{
    WT_BTREE *btree;
    WT_PAGE *page;
    bool inmem_split;

    btree = S2BT(session);

    /*
     * Discard our hazard pointer. Ignore pages we don't have and the root page, which sticks in
     * memory, regardless.
     */
    if (ref == NULL || ref->page == NULL || __wt_ref_is_root(ref))
        return (0);

    /*
     * If hazard pointers aren't necessary for this file, we can't be evicting, we're done.
     */
    if (F_ISSET(btree, WT_BTREE_IN_MEMORY))
        return (0);

    /*
     * Attempt to evict pages with the special "oldest" read generation. This is set for pages that
     * grow larger than the configured memory_page_max setting, when we see many deleted items, and
     * when we are attempting to scan without trashing the cache.
     *
     * Checkpoint should not queue pages for urgent eviction if they require dirty eviction: there
     * is a special exemption that allows checkpoint to evict dirty pages in a tree that is being
     * checkpointed, and no other thread can help with that. Checkpoints don't rely on this code for
     * dirty eviction: that is handled explicitly in __wt_sync_file.
     *
     * If the operation has disabled eviction or splitting, or the session is preventing from
     * reconciling, then just queue the page for urgent eviction. Otherwise, attempt to release and
     * evict it.
     */
    page = ref->page;
    if (WT_READGEN_EVICT_SOON(page->read_gen) && btree->evict_disabled == 0 &&
      __wt_page_can_evict(session, ref, &inmem_split) &&
      (!WT_SESSION_IS_CHECKPOINT(session) || __wt_page_evict_clean(page))) {
        if (LF_ISSET(WT_READ_NO_EVICT) ||
          (inmem_split ? LF_ISSET(WT_READ_NO_SPLIT) : F_ISSET(session, WT_SESSION_NO_RECONCILE)))
            WT_IGNORE_RET_BOOL(__wt_page_evict_urgent(session, ref));
        else {
            WT_RET_BUSY_OK(__wt_page_release_evict(session, ref, flags));
            return (0);
        }
    }

    return (__wt_hazard_clear(session, ref));
}

/*
 * __wt_skip_choose_depth --
 *     Randomly choose a depth for a skiplist insert.
 */
static inline u_int
__wt_skip_choose_depth(WT_SESSION_IMPL *session)
{
    u_int d;

    for (d = 1; d < WT_SKIP_MAXDEPTH && __wt_random(&session->rnd) < WT_SKIP_PROBABILITY; d++)
        ;
    return (d);
}

/*
 * __wt_btree_lsm_over_size --
 *     Return if the size of an in-memory tree with a single leaf page is over a specified maximum.
 *     If called on anything other than a simple tree with a single leaf page, returns true so our
 *     LSM caller will switch to a new tree.
 */
static inline bool
__wt_btree_lsm_over_size(WT_SESSION_IMPL *session, uint64_t maxsize)
{
    WT_BTREE *btree;
    WT_PAGE *child, *root;
    WT_PAGE_INDEX *pindex;
    WT_REF *first;

    btree = S2BT(session);
    root = btree->root.page;

    /* Check for a non-existent tree. */
    if (root == NULL)
        return (false);

    /* A tree that can be evicted always requires a switch. */
    if (btree->evict_disabled == 0)
        return (true);

    /* Check for a tree with a single leaf page. */
    WT_INTL_INDEX_GET(session, root, pindex);
    if (pindex->entries != 1) /* > 1 child page, switch */
        return (true);

    first = pindex->index[0];
    if (first->state != WT_REF_MEM) /* no child page, ignore */
        return (false);

    /*
     * We're reaching down into the page without a hazard pointer, but that's OK because we know
     * that no-eviction is set and so the page cannot disappear.
     */
    child = first->page;
    if (child->type != WT_PAGE_ROW_LEAF) /* not a single leaf page */
        return (true);

    return (child->memory_footprint > maxsize);
}

/*
 * __wt_split_descent_race --
 *     Return if we raced with an internal page split when descending the tree.
 */
static inline bool
__wt_split_descent_race(WT_SESSION_IMPL *session, WT_REF *ref, WT_PAGE_INDEX *saved_pindex)
{
    WT_PAGE_INDEX *pindex;

    /* No test when starting the descent (there's no home to check). */
    if (__wt_ref_is_root(ref))
        return (false);

    /*
     * A place to hang this comment...
     *
     * There's a page-split race when we walk the tree: if we're splitting
     * an internal page into its parent, we update the parent's page index
     * before updating the split page's page index, and it's not an atomic
     * update. A thread can read the parent page's original page index and
     * then read the split page's replacement index.
     *
     * For example, imagine a search descending the tree.
     *
     * Because internal page splits work by truncating the original page to
     * the initial part of the original page, the result of this race is we
     * will have a search key that points past the end of the current page.
     * This is only an issue when we search past the end of the page, if we
     * find a WT_REF in the page with the namespace we're searching for, we
     * don't care if the WT_REF moved or not while we were searching, we
     * have the correct page.
     *
     * For example, imagine an internal page with 3 child pages, with the
     * namespaces a-f, g-h and i-j; the first child page splits. The parent
     * starts out with the following page-index:
     *
     *	| ... | a | g | i | ... |
     *
     * which changes to this:
     *
     *	| ... | a | c | e | g | i | ... |
     *
     * The child starts out with the following page-index:
     *
     *	| a | b | c | d | e | f |
     *
     * which changes to this:
     *
     *	| a | b |
     *
     * The thread searches the original parent page index for the key "cat",
     * it couples to the "a" child page; if it uses the replacement child
     * page index, it will search past the end of the page and couple to the
     * "b" page, which is wrong.
     *
     * To detect the problem, we remember the parent page's page index used
     * to descend the tree. Whenever we search past the end of a page, we
     * check to see if the parent's page index has changed since our use of
     * it during descent. As the problem only appears if we read the split
     * page's replacement index, the parent page's index must already have
     * changed, ensuring we detect the problem.
     *
     * It's possible for the opposite race to happen (a thread could read
     * the parent page's replacement page index and then read the split
     * page's original index). This isn't a problem because internal splits
     * work by truncating the split page, so the split page search is for
     * content the split page retains after the split, and we ignore this
     * race.
     *
     * This code is a general purpose check for a descent race and we call
     * it in other cases, for example, a cursor traversing backwards through
     * the tree.
     *
     * Presumably we acquired a page index on the child page before calling
     * this code, don't re-order that acquisition with this check.
     */
    WT_BARRIER();
    WT_INTL_INDEX_GET(session, ref->home, pindex);
    return (pindex != saved_pindex);
}

/*
 * __wt_page_swap_func --
 *     Swap one page's hazard pointer for another one when hazard pointer coupling up/down the tree.
 */
static inline int
__wt_page_swap_func(WT_SESSION_IMPL *session, WT_REF *held, WT_REF *want, uint32_t flags
#ifdef HAVE_DIAGNOSTIC
  ,
  const char *func, int line
#endif
)
{
    WT_DECL_RET;
    bool acquired;

    /*
     * This function is here to simplify the error handling during hazard pointer coupling so we
     * never leave a hazard pointer dangling. The assumption is we're holding a hazard pointer on
     * "held", and want to acquire a hazard pointer on "want", releasing the hazard pointer on
     * "held" when we're done.
     *
     * When walking the tree, we sometimes swap to the same page. Fast-path that to avoid thinking
     * about error handling.
     */
    if (held == want)
        return (0);

    /* Get the wanted page. */
    ret = __wt_page_in_func(session, want, flags
#ifdef HAVE_DIAGNOSTIC
      ,
      func, line
#endif
    );

    /*
     * Expected failures: page not found or restart. Our callers list the errors they're expecting
     * to handle.
     */
    if (LF_ISSET(WT_READ_NOTFOUND_OK) && ret == WT_NOTFOUND)
        return (WT_NOTFOUND);
    if (LF_ISSET(WT_READ_RESTART_OK) && ret == WT_RESTART)
        return (WT_RESTART);

    /* Discard the original held page on either success or error. */
    acquired = ret == 0;
    WT_TRET(__wt_page_release(session, held, flags));

    /* Fast-path expected success. */
    if (ret == 0)
        return (0);

    /*
     * If there was an error at any point that our caller isn't prepared to handle, discard any page
     * we acquired.
     */
    if (acquired)
        WT_TRET(__wt_page_release(session, want, flags));

    /*
     * If we're returning an error, don't let it be one our caller expects to handle as returned by
     * page-in: the expectation includes the held page not having been released, and that's not the
     * case.
     */
    if (LF_ISSET(WT_READ_NOTFOUND_OK) && ret == WT_NOTFOUND)
        WT_RET_MSG(session, EINVAL, "page-release WT_NOTFOUND error mapped to EINVAL");
    if (LF_ISSET(WT_READ_RESTART_OK) && ret == WT_RESTART)
        WT_RET_MSG(session, EINVAL, "page-release WT_RESTART error mapped to EINVAL");

    return (ret);
}

/*
 * __wt_btcur_skip_page --
 *     Return if the cursor is pointing to a page with deleted records and can be skipped for cursor
 *     traversal.
 */
static inline int
__wt_btcur_skip_page(WT_SESSION_IMPL *session, WT_REF *ref, void *context, bool *skipp)
{
    WT_ADDR_COPY addr;
    uint8_t previous_state;

    WT_UNUSED(context);

    *skipp = false; /* Default to reading */

    /*
     * Determine if all records on the page have been deleted and all the tombstones are visible to
     * our transaction. If so, we can avoid reading the records on the page and move to the next
     * page. We base this decision on the aggregate stop point added to the page during the last
     * reconciliation. We can skip this test if the page has been modified since it was reconciled.
     * We also skip this test on an internal page, as we rely on reconciliation to mark the internal
     * page dirty. There could be a period of time when the internal page is marked clean but the
     * leaf page is dirty and has newer data than let on by the internal page's aggregated
     * information.
     *
     * We are making these decisions while holding a lock for the page as checkpoint or eviction can
     * make changes to the data structures (i.e., aggregate timestamps) we are reading. It is okay
     * if the page is not in memory, or gets evicted before we lock it. In such a case, we can forgo
     * checking if the page has been modified. So, only do a page modified check if the page was in
     * memory before locking.
     */
    if (F_ISSET(ref, WT_REF_FLAG_INTERNAL))
        return (0);

    WT_REF_LOCK(session, ref, &previous_state);
    if ((previous_state == WT_REF_DISK || previous_state == WT_REF_DELETED ||
          (previous_state == WT_REF_MEM && !__wt_page_is_modified(ref->page))) &&
      __wt_ref_addr_copy(session, ref, &addr) && addr.ta.newest_stop_txn != WT_TXN_MAX &&
      addr.ta.newest_stop_ts != WT_TS_MAX &&
      __wt_txn_visible(session, addr.ta.newest_stop_txn, addr.ta.newest_stop_ts))
        *skipp = true;

    WT_REF_UNLOCK(ref, previous_state);

    return (0);
}