summaryrefslogtreecommitdiff
path: root/src/third_party/wiredtiger/src/include/cache.i
blob: 72c8307756d395efc443a5f9202f0cae310b0d71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/*-
 * Copyright (c) 2014-2016 MongoDB, Inc.
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

/*
 * __wt_cache_read_gen --
 *      Get the current read generation number.
 */
static inline uint64_t
__wt_cache_read_gen(WT_SESSION_IMPL *session)
{
	return (S2C(session)->cache->read_gen);
}

/*
 * __wt_cache_read_gen_incr --
 *      Increment the current read generation number.
 */
static inline void
__wt_cache_read_gen_incr(WT_SESSION_IMPL *session)
{
	++S2C(session)->cache->read_gen;
}

/*
 * __wt_cache_read_gen_bump --
 *      Update the page's read generation.
 */
static inline void
__wt_cache_read_gen_bump(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	/* Ignore pages set for forcible eviction. */
	if (page->read_gen == WT_READGEN_OLDEST)
		return;

	/* Ignore pages already in the future. */
	if (page->read_gen > __wt_cache_read_gen(session))
		return;

	/*
	 * We set read-generations in the future (where "the future" is measured
	 * by increments of the global read generation).  The reason is because
	 * when acquiring a new hazard pointer for a page, we can check its read
	 * generation, and if the read generation isn't less than the current
	 * global generation, we don't bother updating the page.  In other
	 * words, the goal is to avoid some number of updates immediately after
	 * each update we have to make.
	 */
	page->read_gen = __wt_cache_read_gen(session) + WT_READGEN_STEP;
}

/*
 * __wt_cache_read_gen_new --
 *      Get the read generation for a new page in memory.
 */
static inline void
__wt_cache_read_gen_new(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;

	cache = S2C(session)->cache;
	page->read_gen =
	    (__wt_cache_read_gen(session) + cache->read_gen_oldest) / 2;
}

/*
 * __wt_cache_pages_inuse --
 *	Return the number of pages in use.
 */
static inline uint64_t
__wt_cache_pages_inuse(WT_CACHE *cache)
{
	return (cache->pages_inmem - cache->pages_evict);
}

/*
 * __wt_cache_bytes_inuse --
 *	Return the number of bytes in use.
 */
static inline uint64_t
__wt_cache_bytes_inuse(WT_CACHE *cache)
{
	uint64_t bytes_inuse;

	/* Adjust the cache size to take allocation overhead into account. */
	bytes_inuse = cache->bytes_inmem;
	if (cache->overhead_pct != 0)
		bytes_inuse +=
		    (bytes_inuse * (uint64_t)cache->overhead_pct) / 100;

	return (bytes_inuse);
}

/*
 * __wt_cache_dirty_inuse --
 *	Return the number of dirty bytes in use.
 */
static inline uint64_t
__wt_cache_dirty_inuse(WT_CACHE *cache)
{
	uint64_t dirty_inuse;

	dirty_inuse = cache->bytes_dirty;
	if (cache->overhead_pct != 0)
		dirty_inuse +=
		    (dirty_inuse * (uint64_t)cache->overhead_pct) / 100;

	return (dirty_inuse);
}

/*
 * __wt_session_can_wait --
 *	Return if a session available for a potentially slow operation.
 */
static inline int
__wt_session_can_wait(WT_SESSION_IMPL *session)
{
	/*
	 * Return if a session available for a potentially slow operation;
	 * for example, used by the block manager in the case of flushing
	 * the system cache.
	 */
	if (!F_ISSET(session, WT_SESSION_CAN_WAIT))
		return (0);

	/*
	 * LSM sets the no-eviction flag when holding the LSM tree lock, in that
	 * case, or when holding the schema lock, we don't want to highjack the
	 * thread for eviction.
	 */
	if (F_ISSET(session, WT_SESSION_NO_EVICTION | WT_SESSION_LOCKED_SCHEMA))
		return (0);

	return (1);
}

/*
 * __wt_eviction_dirty_target --
 *	Return if the eviction server is running to reduce the number of dirty
 * pages (versus running to discard pages from the cache).
 */
static inline bool
__wt_eviction_dirty_target(WT_SESSION_IMPL *session)
{
	return (FLD_ISSET(S2C(session)->cache->state, WT_EVICT_PASS_DIRTY));
}

/*
 * __wt_eviction_needed --
 *	Return if an application thread should do eviction, and the cache full
 * percentage as a side-effect.
 */
static inline bool
__wt_eviction_needed(WT_SESSION_IMPL *session, u_int *pct_fullp)
{
	WT_CONNECTION_IMPL *conn;
	WT_CACHE *cache;
	uint64_t bytes_inuse, bytes_max;
	u_int pct_full;

	conn = S2C(session);
	cache = conn->cache;

	/*
	 * If the connection is closing we do not need eviction from an
	 * application thread.  The eviction subsystem is already closed.
	 */
	if (F_ISSET(conn, WT_CONN_CLOSING))
		return (false);

	/*
	 * Avoid division by zero if the cache size has not yet been set in a
	 * shared cache.
	 */
	bytes_inuse = __wt_cache_bytes_inuse(cache);
	bytes_max = conn->cache_size + 1;

	/*
	 * Calculate the cache full percentage; anything over the trigger means
	 * we involve the application thread.
	 */
	pct_full = (u_int)((100 * bytes_inuse) / bytes_max);
	if (pct_fullp != NULL)
		*pct_fullp = pct_full;
	/*
	 * If the connection is closing we do not need eviction from an
	 * application thread.  The eviction subsystem is already closed.
	 * We return here because some callers depend on the percent full
	 * having been filled in.
	 */
	if (F_ISSET(conn, WT_CONN_CLOSING))
		return (false);

	if (pct_full > cache->eviction_trigger)
		return (true);

	/* Return if there are too many dirty bytes in cache. */
	if (__wt_cache_dirty_inuse(cache) >
	    (cache->eviction_dirty_trigger * bytes_max) / 100)
		return (true);
	return (false);
}

/*
 * __wt_cache_full --
 *	Return if the cache is at (or over) capacity.
 */
static inline bool
__wt_cache_full(WT_SESSION_IMPL *session)
{
	WT_CONNECTION_IMPL *conn;
	WT_CACHE *cache;

	conn = S2C(session);
	cache = conn->cache;

	return (__wt_cache_bytes_inuse(cache) >= conn->cache_size);
}

/*
 * __wt_cache_eviction_check --
 *	Evict pages if the cache crosses its boundaries.
 */
static inline int
__wt_cache_eviction_check(WT_SESSION_IMPL *session, bool busy, bool *didworkp)
{
	WT_BTREE *btree;
	u_int pct_full;

	if (didworkp != NULL)
		*didworkp = false;

	/*
	 * LSM sets the no-cache-check flag when holding the LSM tree lock, in
	 * that case, or when holding the schema or handle list locks (which
	 * block eviction), we don't want to highjack the thread for eviction.
	 */
	if (F_ISSET(session, WT_SESSION_NO_EVICTION |
	    WT_SESSION_LOCKED_HANDLE_LIST | WT_SESSION_LOCKED_SCHEMA))
		return (0);

	/* In memory configurations don't block when the cache is full. */
	if (F_ISSET(S2C(session), WT_CONN_IN_MEMORY))
		return (0);

	/*
	 * Threads operating on cache-resident trees are ignored because they're
	 * not contributing to the problem.
	 */
	btree = S2BT_SAFE(session);
	if (btree != NULL && F_ISSET(btree, WT_BTREE_IN_MEMORY))
		return (0);

	/* Check if eviction is needed. */
	if (!__wt_eviction_needed(session, &pct_full))
		return (0);

	/*
	 * Some callers (those waiting for slow operations), will sleep if there
	 * was no cache work to do. After this point, let them skip the sleep.
	 */
	if (didworkp != NULL)
		*didworkp = true;

	return (__wt_cache_eviction_worker(session, busy, pct_full));
}