summaryrefslogtreecommitdiff
path: root/src/third_party/wiredtiger/tools/optrack/find-latency-spikes.py
blob: 93eed8fea8b874580308fc9c2ef8da2b1ce012a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
#!/usr/bin/env python
#
# Public Domain 2014-2019 MongoDB, Inc.
# Public Domain 2008-2014 WiredTiger, Inc.
#
# This is free and unencumbered software released into the public domain.
#
# Anyone is free to copy, modify, publish, use, compile, sell, or
# distribute this software, either in source code form or as a compiled
# binary, for any purpose, commercial or non-commercial, and by any
# means.
#
# In jurisdictions that recognize copyright laws, the author or authors
# of this software dedicate any and all copyright interest in the
# software to the public domain. We make this dedication for the benefit
# of the public at large and to the detriment of our heirs and
# successors. We intend this dedication to be an overt act of
# relinquishment in perpetuity of all present and future rights to this
# software under copyright law.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
# OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
# ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
# OTHER DEALINGS IN THE SOFTWARE.
#!/usr/bin/env python

import argparse
from bokeh.layouts import column
from bokeh.models import ColumnDataSource, CustomJS, HoverTool, FixedTicker
from bokeh.models import  LabelSet, Legend, LegendItem
from bokeh.models import NumeralTickFormatter, OpenURL, Range1d, TapTool
from bokeh.models.annotations import Label
from bokeh.plotting import figure, output_file, reset_output, save, show
from bokeh.resources import CDN
import matplotlib
from multiprocessing import Process, Queue, Array
import multiprocessing
import numpy as np
import os
import pandas as pd
import sys
import statvfs
import traceback
import time

# A directory where we store cross-file plots for each bucket of the outlier
# histogram.
#
bucketDir = "BUCKET-FILES";

# A static list of available CSS colors
colorList = [];

# Codes for various colors for printing of informational and error messages.
#
class color:
    PURPLE = '\033[95m'
    CYAN = '\033[96m'
    DARKCYAN = '\033[36m'
    BLUE = '\033[94m'
    GREEN = '\033[92m'
    YELLOW = '\033[93m'
    RED = '\033[91m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'
    END = '\033[0m'

# A function name mapped to its corresponding color.
#
funcToColor = {};
lastColorUsed = 0;

# The smallest and the largest timestamps seen across all files.
#
firstTimeStamp = sys.maxsize;
lastTimeStamp = 0;

# A dictionary that holds function-specific threshold values telling
# us when the function is to be considered an outlier. These values
# would be read from a config file, if supplied by the user.
#
userDefinedLatencyThresholds = {};
userDefinedThresholdNames = {};

# A dictionary that holds a reference to the raw dataframe for each file.
#
perFileDataFrame = {};

# A dictionary that holds the intervals data per function.
#
perFuncDF = {};

# Data frames and largest stack depth for each file.
perFileDataFrame = {};
perFileLargestStackDepth = {};

# Each file has a timestamp indicating when the logging began
perFileTimeStamps = {};

plotWidth = 1200;
pixelsForTitle = 30;
pixelsPerHeightUnit = 30;
pixelsPerWidthUnit = 5;

# How many work units for perform in parallel.
targetParallelism = 0;

# The name of the time units that were used when recording timestamps.
# We assume that it's nanoseconds by default. Alternative units can be
# set in the configuration file.
#
timeUnitString = "nanoseconds";

# The percentile threshold. A function duration above that percentile
# is deemed an outlier.
#
PERCENTILE = 0.999;

def initColorList():

    global colorList;

    colorList = matplotlib.colors.cnames.keys();

    for color in colorList:
        # Some browsers break if you try to give them 'sage'
        if (color == "sage"):
            colorList.remove(color);
        # We reserve red to highlight occurrences of functions
        # that exceeded the user-defined latency threshold. Do
        # not use red for regular function colors.
        #
        elif (color == "red"):
            colorList.remove(color);

#
# Each unique function name gets a unique color.
# If we run out of colors, we repeat them from the
# beginning of the list.
#
def getColorForFunction(function):

    global colorList;
    global lastColorUsed;
    global funcToColor;

    if not funcToColor.has_key(function):
        funcToColor[function] = colorList[lastColorUsed % len(colorList)];
        lastColorUsed += 1;

    return funcToColor[function];

#
# An intervalEnd is a tuple of three items.
# item #0 is the timestamp,
# item #1 is the event type,
# item #2 is the function name.
#
def getIntervalData(intervalBeginningsStack, intervalEnd, logfile):

    errorOccurred = False;
    matchFound = False;

    if (intervalEnd[1] != 1):
        logfile.write(
            "getIntervaldata: only rows with event type 1 can be used.\n");
        logfile.write(str(intervalEnd) + "\n");
        return None;

    if (len(intervalBeginningsStack) < 1):
        logfile.write("Nothing on the intervalBeginningsStack. " +
                      "I cannot find the beginning for this interval.\n");
        logfile.write(str(intervalEnd) + "\n");
        return None;

    while (not matchFound):
        intervalBegin = intervalBeginningsStack.pop();
        if (intervalBegin is None):
            logfile.write("Could not find the matching operation begin record" +
                          " for the following operation end record: \n");
            logfile.write(str(intervalEnd) + "\n");
            return None;
        if (intervalBegin[2] != intervalEnd[2]):
            logfile.write("Operation end record does not match the available " +
                          "operation begin record. " +
                          "Your log file may be incomplete.\n" +
                          "Skipping the begin record.\n");
            logfile.write("Begin: " + str(intervalBegin) + "\n");
            logfile.write("End: " + str(intervalEnd) + "\n");
            errorOccurred = True;
        else:
            matchFound = True;

    return intervalBegin[0], intervalEnd[0], intervalEnd[2], errorOccurred;

def plotOutlierHistogram(dataframe, maxOutliers, func,
                         statisticalOutlierThreshold,
                         userLatencyThreshold,
                         averageDuration, maxDuration):

    global pixelsForTitle;
    global pixelsPerHeightUnit;
    global plotWidth;
    global timeUnitString;

    cds = ColumnDataSource(dataframe);

    figureTitle = "Occurrences of " + func + " that took longer than " \
                  + statisticalOutlierThreshold + ".";

    hover = HoverTool(tooltips = [
        ("interval start", "@lowerbound{0,0}"),
        ("interval end", "@upperbound{0,0}")]);

    TOOLS = [hover, "tap, reset"];

    p = figure(title = figureTitle, plot_width = plotWidth,
               plot_height = min(500, (max(5, (maxOutliers + 1)) \
                                       * pixelsPerHeightUnit + \
                                       pixelsForTitle)),
               x_axis_label = "Execution timeline (" + timeUnitString + ")",
               y_axis_label = "Number of outliers",
               tools = TOOLS, toolbar_location="above");

    y_ticker_max = p.plot_height / pixelsPerHeightUnit;
    y_ticker_step = max(1, (maxOutliers + 1)/y_ticker_max);
    y_upper_bound = (maxOutliers / y_ticker_step + 2) * y_ticker_step;

    p.yaxis.ticker = FixedTicker(ticks =
                                 range(0, y_upper_bound, y_ticker_step));
    p.ygrid.ticker = FixedTicker(ticks =
                                 range(0, y_upper_bound, y_ticker_step));
    p.xaxis.formatter = NumeralTickFormatter(format="0,");

    p.y_range = Range1d(0, y_upper_bound);

    p.quad(left = 'lowerbound', right = 'upperbound', bottom = 'bottom',
           top = 'height', color = funcToColor[func], source = cds,
           nonselection_fill_color= funcToColor[func],
           nonselection_fill_alpha = 1.0,
           line_color = "lightgrey",
           selection_fill_color = funcToColor[func],
           selection_line_color="grey"
    );

    p.x(x='markerX', y='markerY', size='markersize', color = 'navy',
        line_width = 1, source = cds);

    # Add an annotation to the chart
    #
    y_max = dataframe['height'].max();
    text = "Average duration: " + '{0:,.0f}'.format(averageDuration) + " " + \
           timeUnitString + \
           ". Maximum duration: " + '{0:,.0f}'.format(maxDuration) + " " + \
           timeUnitString + ". ";
    if (userLatencyThreshold is not None):
        text = text + \
               "An \'x\' shows intervals with operations exceeding " + \
               "a user-defined threshold of " + \
               userLatencyThreshold + ".";
    mytext = Label(x=0, y=y_upper_bound-y_ticker_step, text=text,
                   text_color = "grey", text_font = "helvetica",
                   text_font_size = "10pt",
                   text_font_style = "italic");
    p.add_layout(mytext);

    url = "@bucketfiles";
    taptool = p.select(type=TapTool);
    taptool.callback = OpenURL(url=url);

    return p;

# From all timestamps subtract the smallest observed timestamp, so that
# our execution timeline begins at zero.
# Cleanup the data to remove incomplete records and fix their effects.
#
def normalizeIntervalData():

    global firstTimeStamp;
    global perFileDataFrame;

    print(color.BLUE + color.BOLD + "Normalizing data..." + color.END);

    for file, df in perFileDataFrame.iteritems():
        df['origstart'] = df['start'];
        df['start'] = df['start'] - firstTimeStamp;
        df['end'] = df['end'] - firstTimeStamp;

def reportDataError(logfile, logfilename):

    if (logfile is not sys.stdout):
        print(color.BOLD + color.RED + "Your data may have errors. " +
              "Check the file " + logfilename + " for details." + color.END);
    return True;

#
# Go over all operation records in the dataframe and assign stack depths.
#
def assignStackDepths(dataframe):

    stack = [];

    df = dataframe.sort_values(by=['start']);
    df = df.reset_index(drop = True);

    for i in range(len(df.index)):

        myEndTime = df.at[i, 'end'];

        # Pop all items off stack whose end time is earlier than my
        # end time. They are not the callers on my stack, so I don't want to
        # count them.
        #
        while (len(stack) > 0 and stack[-1] < myEndTime):
            stack.pop();

        df.at[i, 'stackdepth'] = len(stack);
        stack.append(df.at[i, 'end']);

    return df;

def createCallstackSeries(data, logfilename):

    global firstTimeStamp;
    global lastTimeStamp;

    colors = [];
    beginIntervals = [];
    dataFrame = None;
    endIntervals = [];
    errorReported = False;
    functionNames = [];
    intervalBeginningsStack = [];
    largestStackDepth = 0;
    logfile = None;
    thisIsFirstRow = True;

    # Let's open the log file.
    try:
        logfile = open(logfilename, "w");
    except:
        logfile = sys.stdout;

    for row in data.itertuples():
        # row[0] is the timestamp, row[1] is the event type,
        # row[2] is the function name.
        #
        if (row[1] == 0):
            intervalBeginningsStack.append(row);
        elif (row[1] == 1):
            try:
                intervalBegin, intervalEnd, function, error\
                    = getIntervalData(intervalBeginningsStack, row, logfile);
                if (error and (not errorReported)):
                    errorReported = reportDataError(logfile, logfilename);
            except:
                if (not errorReported):
                    errorReported = reportDataError(logfile, logfilename);
                continue;

            if (intervalBegin < firstTimeStamp):
                firstTimeStamp =  intervalBegin;
            if (intervalEnd > lastTimeStamp):
                lastTimeStamp = intervalEnd;

            colors.append(getColorForFunction(function));
            beginIntervals.append(intervalBegin);
            endIntervals.append(intervalEnd);
            functionNames.append(function);

        else:
            print("Invalid event in this line:");
            print(str(row[0]) + " " + str(row[1]) + " " + str(row[2]));
            continue;

    if (len(intervalBeginningsStack) > 0):
        logfile.write(str(len(intervalBeginningsStack)) + " operations had a " +
                      "begin record, but no matching end records. " +
                      "Please check that your operation tracking macros " +
                      "are properly inserted.\n");
        if (not errorReported):
            errorReported = reportDataError(logfile, logfilename);
        intervalBeginningsStack = [];

    dict = {};
    dict['color'] = colors;
    dict['start'] = beginIntervals;
    dict['end'] = endIntervals;
    dict['function'] = functionNames;
    dict['stackdepth'] = [0] * len(beginIntervals);

    dataframe = pd.DataFrame(data=dict);
    dataframe = assignStackDepths(dataframe);

    dataframe['durations'] = dataframe['end'] - dataframe['start'];
    dataframe['stackdepthNext'] = dataframe['stackdepth'] + 1;

    return dataframe;

# For each function we only show the legend once. In this dictionary we
# keep track of colors already used.
#
colorAlreadyUsedInLegend = {};

def createLegendFigure(legendDict):

    global pixelsForTitle;
    global plotWidth;

    FUNCS_PER_ROW = 5;
    HSPACE_BETWEEN_FUNCS = 10;
    VSPACE_BETWEEN_FUNCS = 1;

    funcs = [];
    colors = [];
    x_coords = [];
    y_coords = [];
    pixelsForLegendItem = 20;

    # Get a sorted list of functions and their
    # corresponding colors.
    #
    for func in sorted(legendDict.keys()):
        funcs.append(func);
        colors.append(legendDict[func]);

    # Figure out the coordinates of functions on the plot
    #
    for i in range(len(funcs)):

        x_coord = i % (FUNCS_PER_ROW) + 1;
        x_coord += i % (FUNCS_PER_ROW) *  HSPACE_BETWEEN_FUNCS;
        x_coords.append(x_coord);

        y_coord = (i/FUNCS_PER_ROW) + 1;
        y_coord += (i/FUNCS_PER_ROW) *  VSPACE_BETWEEN_FUNCS;
        y_coords.append(y_coord);

    data = {};
    data['func'] = funcs;
    data['color'] = colors;
    data['left'] = x_coords;
    data['bottom'] = y_coords;

    df = pd.DataFrame(data=data);

    max_ycoord = df['bottom'].max();
    df['bottom'] = (max_ycoord + 1) - df['bottom'];

    df['right'] = df['left'] + 1;
    df['top'] = df['bottom'] + 1;

    cds = ColumnDataSource(df);

    p = figure(title="TRACKED FUNCTIONS",
               plot_width=plotWidth,
               plot_height = max((max_ycoord + 2) * pixelsForLegendItem, 90),
               tools = [], toolbar_location="above",
               x_range = (0, (FUNCS_PER_ROW + 1)* HSPACE_BETWEEN_FUNCS),
               y_range = (0, max_ycoord + 2),
               x_axis_label = "",
               y_axis_label = "");

    p.title.align = "center";
    p.title.text_font_style = "normal";

    p.xaxis.axis_line_color = "lightgrey";
    p.xaxis.major_tick_line_color = None;
    p.xaxis.minor_tick_line_color = None;
    p.xaxis.major_label_text_font_size = '0pt';

    p.yaxis.axis_line_color = "lightgrey";
    p.yaxis.major_tick_line_color = None;
    p.yaxis.minor_tick_line_color = None;
    p.yaxis.major_label_text_font_size = '0pt';

    p.xgrid.grid_line_color = None;
    p.ygrid.grid_line_color = None;

    p.outline_line_width = 1
    p.outline_line_alpha = 1
    p.outline_line_color = "lightgrey"

    p.quad(left = 'left', right = 'right', bottom = 'bottom',
           top = 'top', color = 'color', line_color = "lightgrey",
           line_width = 0.5, source=cds);

    labels = LabelSet(x='right', y='bottom', text='func', level='glyph',
                      text_font_size = "10pt",
                      x_offset=3, y_offset=0, source=cds, render_mode='canvas');
    p.add_layout(labels);

    return p;

def generateBucketChartForFile(figureName, dataframe, y_max, x_min, x_max):

    global funcToColor;
    global plotWidth;
    global timeUnitString;

    colorAlreadyUsedInLegend = {};

    MAX_ITEMS_PER_LEGEND = 10;
    numLegends = 0;
    legendItems = {};
    pixelsPerStackLevel = 30;
    pixelsPerLegend = 60;
    pixelsForTitle = 30;

    cds = ColumnDataSource(dataframe);

    hover = HoverTool(tooltips=[
        ("function", "@function"),
        ("duration", "@durations{0,0}"),
        ("log file begin timestamp", "@origstart{0,0}")
    ]);

    TOOLS = [hover];

    p = figure(title=figureName, plot_width=plotWidth,
               x_range = (x_min, x_max),
               y_range = (0, y_max+1),
               x_axis_label = "Time (" + timeUnitString + ")",
               y_axis_label = "Stack depth",
               tools = TOOLS, toolbar_location="above");

    # No minor ticks or labels on the y-axis
    p.yaxis.major_tick_line_color = None;
    p.yaxis.minor_tick_line_color = None;
    p.yaxis.major_label_text_font_size = '0pt';
    p.yaxis.ticker = FixedTicker(ticks = range(0, y_max+1));
    p.ygrid.ticker = FixedTicker(ticks = range(0, y_max+1));

    p.xaxis.formatter = NumeralTickFormatter(format="0,");
    p.title.text_font_style = "bold";

    p.quad(left = 'start', right = 'end', bottom = 'stackdepth',
           top = 'stackdepthNext', color = 'color', line_color = "lightgrey",
           line_width = 0.5, source=cds);

    for func, fColor in funcToColor.iteritems():

        # If this function is not present in this dataframe,
        # we don't care about it.
        #
        boolVec = (dataframe['function'] == func);
        fDF = dataframe[boolVec];
        if (fDF.size == 0):
            continue;

        # If we already added a color to any legend, we don't
        # add it again to avoid redundancy in the charts and
        # in order not to waste space.
        #
        if (colorAlreadyUsedInLegend.has_key(fColor)):
            continue;
        else:
            colorAlreadyUsedInLegend[fColor] = True;

        legendItems[func] = fColor;

    # Plot height is the function of the maximum call stack and the number of
    # legends
    p.plot_height =  max((y_max+1) * pixelsPerStackLevel, 100) + pixelsForTitle;

    return p, legendItems;

def generateEmptyDataset():

    dict = {};
    dict['color'] = [0];
    dict['durations'] = [0];
    dict['start'] = [0];
    dict['end'] = [0];
    dict['function'] = [""];
    dict['stackdepth'] = [0];
    dict['stackdepthNext'] = [0];

    return pd.DataFrame(data=dict);

#
# Here we generate plots that span all the input files. Each plot shows
# the timelines for all files, stacked vertically. The timeline shows
# the function callstacks over time from this file.
#
# Since a single timeline is too large to fit on a single screen, we generate
# a separate HTML file with plots for bucket "i". A bucket is a vertical slice
# across the timelines for all files. We call it a bucket, because it
# corresponds to a bucket in the outlier histogram.
#
def generateCrossFilePlotsForBucket(i, lowerBound, upperBound, navigatorDF,
                                    retFilename):

    global bucketDir;
    global timeUnitString;

    aggregateLegendDict = {};
    figuresForAllFiles = [];
    fileName = bucketDir + "/bucket-" + str(i) + ".html";

    reset_output();

    intervalTitle = "Interval #" + str(i) + ". {:,}".format(lowerBound) + \
                    " to " + "{:,}".format(upperBound) + \
                    " " + timeUnitString + ".";

    # Generate a navigator chart, which shows where we are in the
    # trace and allows moving around the trace.
    #
    navigatorFigure = generateNavigatorFigure(navigatorDF, i, intervalTitle);
    figuresForAllFiles.append(navigatorFigure);

    # Select from the dataframe for this file the records whose 'start'
    # and 'end' timestamps fall within the lower and upper bound.
    #
    for fname in sorted(perFileDataFrame.keys()):

        fileDF = perFileDataFrame[fname];

        # Select operations whose start timestamp falls within
        # the current interval, delimited by lowerBound and upperBound.
        #
        startInBucket = fileDF.loc[(fileDF['start'] >= lowerBound)
                                   & (fileDF['start'] < upperBound)];

        # Select operations whose end timestamp falls within
        # the current interval, delimited by lowerBound and upperBound.
        #
        endInBucket = fileDF.loc[(fileDF['end'] > lowerBound)
                                   & (fileDF['end'] <= upperBound)];

        # Select operations that begin before this interval and end after
        # this interval, but continue throughout this interval. The interval
        # is delimited by lowerBound and upperBound.
        #
        spanBucket = fileDF.loc[(fileDF['start'] < lowerBound)
                                   & (fileDF['end'] > upperBound)];

        frames = [startInBucket, endInBucket, spanBucket];
        bucketDF = pd.concat(frames).drop_duplicates().reset_index(drop=True);

        if (bucketDF.size == 0):
            continue;

        # If the end of the function is outside the interval, let's pretend
        # that it is within the interval, otherwise we won't see any data about
        # it when we hover. This won't have the effect of showing wrong
        # data to the user.
        #
        mask = bucketDF.end >= upperBound;
        bucketDF.loc[mask, 'end'] = upperBound-1;

        # Same adjustment as above if the start of the operation falls outside
        # the interval's lower bound.
        #
        mask = bucketDF.start < lowerBound;
        bucketDF.loc[mask, 'start'] = lowerBound;

        largestStackDepth = bucketDF['stackdepthNext'].max();
        figureTitle = fname;

        figure, legendDict = generateBucketChartForFile(figureTitle, bucketDF,
                                                        largestStackDepth,
                                                        lowerBound, upperBound);
        aggregateLegendDict.update(legendDict);
        figuresForAllFiles.append(figure);

    # Create the legend for this file and insert it after the navigator figure
    if (len(aggregateLegendDict) > 0):
        legendFigure = createLegendFigure(aggregateLegendDict);
        figuresForAllFiles.insert(1, legendFigure);

    save(column(figuresForAllFiles), filename = fileName,
         title=intervalTitle, resources=CDN);

    retFilename.value = fileName;


# Generate a plot that shows a view of the entire timeline in a form of
# intervals. By clicking on an interval we can navigate to that interval.
#
def generateNavigatorFigure(dataframe, i, title):

    global pixelsForTitle;
    global pixelsPerHeightUnit;
    global plotWidth;

    # Generate the colors, such that the current interval is shown in a
    # different color than the rest.
    #
    numIntervals = dataframe['intervalnumber'].size;
    color = ["white" for x in range(numIntervals)];
    color[i] = "salmon";
    dataframe['color'] = color;

    cds = ColumnDataSource(dataframe);

    title = title + " CLICK TO NAVIGATE";

    hover = HoverTool(tooltips = [
        ("interval #", "@intervalnumber"),
        ("interval start", "@intervalbegin{0,0}"),
        ("interval end", "@intervalend{0,0}")]);

    TOOLS = [hover, "tap"];

    p = figure(title = title, plot_width = plotWidth,
               x_range = (0, numIntervals),
               plot_height =  2 * pixelsPerHeightUnit + pixelsForTitle,
               x_axis_label = "",
               y_axis_label = "", tools = TOOLS,
               toolbar_location="above");

    # No minor ticks or labels on the y-axis
    p.yaxis.major_tick_line_color = None;
    p.yaxis.minor_tick_line_color = None;
    p.yaxis.major_label_text_font_size = '0pt';
    p.yaxis.ticker = FixedTicker(ticks = range(0, 1));
    p.ygrid.ticker = FixedTicker(ticks = range(0, 1));

    p.xaxis.formatter = NumeralTickFormatter(format="0,");

    p.title.align = "center";
    p.title.text_font_style = "normal";

    p.quad(left = 'intervalnumber', right = 'intervalnumbernext',
           bottom = 0, top = 2, color = 'color', source = cds,
           nonselection_fill_color='color',
           nonselection_fill_alpha = 1.0,
           line_color = "aliceblue",
           selection_fill_color = "white",
           selection_line_color="lightgrey"
    );

    url = "@bucketfiles";
    taptool = p.select(type=TapTool);
    taptool.callback = OpenURL(url=url);

    return p;


# Create a dataframe describing all time intervals, which will later be used
# to generate a plot allowing us to navigate along the execution by clicking
# on different intervals.
#
def createIntervalNavigatorDF(numBuckets, timeUnitsPerBucket):

    global bucketDir;

    bucketFiles = [];
    bucketID = [];
    intervalBegin = [];
    intervalEnd = [];

    for i in range(numBuckets):

        lBound = i * timeUnitsPerBucket;
        uBound = (i+1) * timeUnitsPerBucket;
        fileName = "bucket-" + str(i) + ".html";

        bucketID.append(i);
        intervalBegin.append(lBound);
        intervalEnd.append(uBound);
        bucketFiles.append(fileName);

    data = {};
    data['bucketfiles'] = bucketFiles;
    data['intervalbegin'] =  intervalBegin;
    data['intervalend'] =  intervalEnd;
    data['intervalnumber'] = bucketID;

    dataframe = pd.DataFrame(data=data);
    dataframe['intervalnumbernext'] = dataframe['intervalnumber'] + 1;
    return dataframe;


def waitOnOneProcess(runningProcesses):

    success = False;
    for i, p in runningProcesses.items():
        if (not p.is_alive()):
            del runningProcesses[i];
            success = True;

    # If we have not found a terminated process, sleep for a while
    if (not success):
        time.sleep(1);

# Update the UI message showing what percentage of work done by
# parallel processes has completed.
#
def updatePercentComplete(runnableProcesses, runningProcesses,
                          totalWorkItems, workName):

    percentComplete = float(totalWorkItems - len(runnableProcesses) \
                        - len(runningProcesses)) / float(totalWorkItems) * 100;
    print(color.BLUE + color.BOLD + " " + workName),
    sys.stdout.write(" %d%% complete  \r" % (percentComplete) );
    sys.stdout.flush();

# Generate plots of time series slices across all files for each bucket
# in the outlier histogram. Save each cross-file slice to an HTML file.
#
def generateTSSlicesForBuckets():

    global firstTimeStamp;
    global lastTimeStamp;
    global plotWidth;
    global pixelsPerWidthUnit;
    global targetParallelism;

    bucketFilenames = [];
    runnableProcesses = {};
    returnValues = {};
    spawnedProcesses = {};

    numBuckets = plotWidth / pixelsPerWidthUnit;
    timeUnitsPerBucket = (lastTimeStamp - firstTimeStamp) / numBuckets;

    navigatorDF = createIntervalNavigatorDF(numBuckets, timeUnitsPerBucket);

    print(color.BLUE + color.BOLD +
        "Will process " + str(targetParallelism) + " work units in parallel."
        + color.END);

    for i in range(numBuckets):
        retFilename = Array('c', os.statvfs('/')[statvfs.F_NAMEMAX]);
        lowerBound = i * timeUnitsPerBucket;
        upperBound = (i+1) * timeUnitsPerBucket;

        p = Process(target=generateCrossFilePlotsForBucket,
                    args=(i, lowerBound, upperBound,
                          navigatorDF, retFilename));
        runnableProcesses[i] = p;
        returnValues[i] = retFilename;

    while (len(runnableProcesses) > 0):
        while (len(spawnedProcesses) < targetParallelism
               and len(runnableProcesses) > 0):

            i, p = runnableProcesses.popitem();
            p.start();
            spawnedProcesses[i] = p;

        # Find at least one terminated process
        waitOnOneProcess(spawnedProcesses);
        updatePercentComplete(runnableProcesses, spawnedProcesses,
                              numBuckets, "Generating timeline charts");

    # Wait for all processes to terminate
    while (len(spawnedProcesses) > 0):
        waitOnOneProcess(spawnedProcesses);
        updatePercentComplete(runnableProcesses, spawnedProcesses,
                              numBuckets, "Generating timeline charts");

    for i, fname in returnValues.items():
        bucketFilenames.append(str(fname.value));
    print(color.END);

    return bucketFilenames;

#
# After we have cleaned up the data by getting rid of incomplete function
# call records (e.g., a function begin record is presend but a function end
# is not or vice versa), we optionally dump this clean data into a file, so
# it can be re-processed by other visualization tools. The output format is
#
# <0/1> <funcname> <timestamp>
#
# We use '0' if it's a function entry, '1' if it's a function exit.
#
def dumpCleanData(fname, df):

    enterExit = [];
    timestamps = [];
    functionNames = [];

    outfile = None;
    fnameParts = fname.split(".txt");
    newfname = fnameParts[0] + "-clean.txt";

    for index, row in df.iterrows():
        # Append the function enter record:
        enterExit.append(0);
        timestamps.append(row['start']);
        functionNames.append(row['function']);

        # Append the function exit record:
        enterExit.append(1);
        timestamps.append(row['end']);
        functionNames.append(row['function']);

    newDF = pd.DataFrame({'enterExit' : enterExit, 'timestamp' : timestamps,
                          'function' : functionNames});
    newDF = newDF.set_index('timestamp', drop=False);
    newDF.sort_index(inplace = True);

    print("Dumping clean data to " + newfname);
    newDF.to_csv(newfname, sep=' ', index=False, header=False,
                 columns = ['enterExit', 'function', 'timestamp']);

def checkForTimestampAndGetRowSkip(fname):

    global perFileTimeStamps;

    with open(fname) as f:
        firstLine = f.readline();

        firstLine = firstLine.strip();
        words = firstLine.split(" ");

        if (len(words) == 1):
            try:
                perFileTimeStamps[fname] = long(words[0]);
            except ValueError:
                print(color.BOLD + color.RED +
                      "Could not parse seconds since Epoch on first line" +
                      + color.END);
            return 1;
        else:
            return 0;

def processFile(fname, dumpCleanDataBool):

    global perFileDataFrame;
    global perFuncDF;

    skipRows = checkForTimestampAndGetRowSkip(fname);

    rawData = pd.read_csv(fname,
                          header=None, delimiter=" ",
                          index_col=2,
                          names=["Event", "Function", "Timestamp"],
                          dtype={"Event": np.int32, "Timestamp": np.int64},
                          thousands=",", skiprows = skipRows);

    print(color.BOLD + color.BLUE +
          "Processing file " + str(fname) + color.END);
    iDF = createCallstackSeries(rawData, "." + fname + ".log");

    if (dumpCleanDataBool):
        dumpCleanData(fname, iDF);


    perFileDataFrame[fname] = iDF;

    for func in funcToColor.keys():

        funcDF = iDF.loc[lambda iDF: iDF.function == func, :];
        funcDF = funcDF.drop(columns = ['function']);

        if (not perFuncDF.has_key(func)):
            perFuncDF[func] = funcDF;
        else:
            perFuncDF[func] = pd.concat([perFuncDF[func], funcDF]);


#
# For each function, split the timeline into buckets. In each bucket
# show how many times this function took an unusually long time to
# execute.
#
def createOutlierHistogramForFunction(func, funcDF, bucketFilenames):

    global firstTimeStamp;
    global lastTimeStamp;
    global plotWidth;
    global pixelsPerWidthUnit;
    global timeUnitString;
    global PERCENTILE;

    statisticalOutlierThreshold = 0;
    statisticalOutlierThresholdDescr = "";
    userLatencyThreshold = sys.maxint;
    userLatencyThresholdDescr = None;


    #
    # funcDF is a list of functions along with their start and end
    # interval and durations. We need to create a new dataframe where
    # we separate the entire timeline into a fixed number of periods
    # and for each period compute how many outlier durations were
    # observed. Then we create a histogram from this data.

    # Subtract the smallest timestamp from all the interval data.
    funcDF['start'] = funcDF['start'] - firstTimeStamp;
    funcDF['end'] = funcDF['end'] - firstTimeStamp;

    funcDF = funcDF.sort_values(by=['start']);

    averageDuration = funcDF['durations'].mean();
    maxDuration = funcDF['durations'].max();

    # There are two things that we want to capture on the
    # outlier charts: statistical outliers and functions exceeding the
    # user-defined latency threshold. An outlier is a function
    # whose duration is in the 99.9th percentile. For each
    # time period we will show a bar whose height corresponds
    # to the number of outliers observed during this exection
    # period.
    #
    # Not all outliers are indicative of performance problems.
    # To highlight real performance problems (as defined by the user)
    # we will highlight those bars that contain operations whose
    # duration exceeded the user-defined threshold.
    #
    if (userDefinedLatencyThresholds.has_key(func)):
        userLatencyThreshold = userDefinedLatencyThresholds[func];
        userLatencyThresholdDescr = userDefinedThresholdNames[func];
    elif (userDefinedLatencyThresholds.has_key("*")):
        userLatencyThreshold = userDefinedLatencyThresholds["*"];
        userLatencyThresholdDescr = userDefinedThresholdNames["*"];

    statisticalOutlierThreshold = funcDF['durations'].quantile(PERCENTILE);
    statisticalOutlierThresholdDescr = \
                            '{0:,.0f}'.format(statisticalOutlierThreshold) \
                            + " " + timeUnitString + \
                            " (" + str(PERCENTILE * 100) + \
                            "th percentile)";


    numBuckets = plotWidth / pixelsPerWidthUnit;
    timeUnitsPerBucket = (lastTimeStamp - firstTimeStamp) / numBuckets;

    bucketHeights = [];
    markers = [];
    lowerBounds = [];
    maxOutliers = 0;
    upperBounds = [];

    for i in range(numBuckets):
        markerSize = 0;
        lowerBound = i * timeUnitsPerBucket;
        upperBound = (i+1) * timeUnitsPerBucket;

        # Find out how many statistical outliers we have in the
        # current period.
        bucketDF = funcDF.loc[(funcDF['start'] >= lowerBound)
                              & (funcDF['start'] < upperBound)
                              & (funcDF['durations'] >=
                                 statisticalOutlierThreshold)];

        # The number of statistical outliers is the height of the bar
        numOutliers = bucketDF.size;
        if (numOutliers > maxOutliers):
            maxOutliers = numOutliers;

        # Find out whether we have any functions whose duration exceeded
        # the user-defined threshold.
        if (userLatencyThresholdDescr is not None):
            bucketDF = funcDF.loc[(funcDF['start'] >= lowerBound)
                                  & (funcDF['start'] < upperBound)
                                  & (funcDF['durations'] >=
                                     userLatencyThreshold)];

            # If there is at least one element in this dataframe, then the
            # operations that exceeded the user defined latency threshold are
            # present in this period. Highlight this bucket with a bright color.
            if (bucketDF.size > 0):
                markerSize = 6;

        lowerBounds.append(lowerBound);
        upperBounds.append(upperBound);
        bucketHeights.append(numOutliers);
        markers.append(markerSize);

    if (maxOutliers == 0):
        return None;

    dict = {};
    dict['lowerbound'] = lowerBounds;
    dict['upperbound'] = upperBounds;
    dict['height'] = bucketHeights;
    dict['bottom'] = [0] * len(lowerBounds);
    dict['bucketfiles'] = bucketFilenames;
    dict['markersize'] = markers;

    dataframe = pd.DataFrame(data=dict);
    dataframe['markerX'] = dataframe['lowerbound'] +  \
                           (dataframe['upperbound'] -
                            dataframe['lowerbound']) / 2 ;
    dataframe['markerY'] = dataframe['height'] + 0.2;

    return plotOutlierHistogram(dataframe, maxOutliers, func,
                                statisticalOutlierThresholdDescr,
                                userLatencyThresholdDescr,
                                averageDuration,
                                maxDuration);

#
# Return the string naming the time units used to measure time stamps,
# depending on how many time units there are in a second.
#
def getTimeUnitString(unitsPerSecond):

    if unitsPerSecond == 1000:
        return "milliseconds";
    elif unitsPerSecond == 1000000:
        return "microseconds";
    elif unitsPerSecond == 1000000000:
        return "nanoseconds";
    else:
        return "CPU cycles";

#
# The configuration file tells us which functions should be considered
# outliers. All comment lines must begin with '#'.
#
# The first non-comment line of the file must tell us how to interpret
# the measurement units in the trace file. It must have a single number
# telling us how many time units are contained in a second. This should
# be the same time units used in the trace file. For example, if the trace
# file contains timestamps measured in milliseconds, the number would be 1000,
# it the timestamp is in nanoseconds, the number would be 1000000000.
# If timestamps were measured in clock cycles, the number
# must tell us how many times the CPU clock ticks per second on the processor
# where the trace was gathered.
#
# The remaining lines must have the format:
#       <func_name> <outlier_threshold> [units]
#
# For example, if you would like to flag as outliers all instances of
# __cursor_row_search that took longer than 200ms, you would specify this as:
#
#        __cursor_row_search 200 ms
#
# You can use * as the wildcard for all function. No other wildcard options are
# supported at the moment.
#
# Acceptable units are:
#
# s -- for seconds
# ms -- for milliseconds
# us -- for microseconds
# ns -- for nanoseconds
# stdev -- for standard deviations.
#
# If no units are supplied, the same unit as the one used for the timestamp
# in the trace files is assumed.
#
# If there is a valid configuration file, but the function does not appear in
# it, we will not generate an outlier histogram for this function. Use the
# wildcard symbol to include all functions.
#
def parseConfigFile(fname):

    global userDefinedLatencyThresholds;
    global userDefinedThresholdNames;
    global timeUnitString;

    configFile = None;
    firstNonCommentLine = True;
    unitsPerSecond = -1;
    unitsPerMillisecond = 0.0;
    unitsPerMicrosecond = 0.0;
    unitsPerNanosecond = 0.0;

    try:
        configFile = open(fname, "r");
    except:
        print(color.BOLD + color.RED +
              "Could not open " + fname + " for reading." + color.END);
        return False;

    for line in configFile:

        if (line[0] == "#"):
            continue;
        elif (firstNonCommentLine):
            try:
                unitsPerSecond = int(line);
                unitsPerMillisecond = unitsPerSecond / 1000;
                unitsPerMicrosecond = unitsPerSecond / 1000000;
                unitsPerNanosecond  = unitsPerSecond / 1000000000;

                timeUnitString = getTimeUnitString(unitsPerSecond);

                firstNonCommentLine = False;
            except ValueError:
                print(color.BOLD + color.RED +
                      "Could not parse the number of measurement units " +
                      "per second. This must be the first value in the " +
                      "config file." + color.END);
                return False;
        else:
            func = "";
            number = 0;
            threshold = 0.0;
            units = "";

            words = line.split();
            try:
                func = words[0];
                number = int(words[1]);
                units = words[2];
            except ValueError:
                print(color.BOLD + color.RED +
                      "While parsing the config file, could not understand " +
                      "the following line: " + color.END);
                print(line);
                continue;

            # Now convert the number to the baseline units and record in the
            # dictionary.
            #
            if (units == "s"):
                threshold = unitsPerSecond * number;
            elif (units == "ms"):
                threshold = unitsPerMillisecond * number;
            elif (units == "us"):
                threshold = unitsPerMicrosecond * number;
            elif (units == "ns"):
                threshold = unitsPerNanosecond * number;
            elif (units == "stdev"):
                threshold = -units;
                # We record it as negative, so that we know
                # this is a standard deviation. We will compute
                # the actual value once we know the average.
            else:
                print(color.BOLD + color.RED +
                      "While parsing the config file, could not understand " +
                      "the following line: " + color.END);
                print(line);
                continue;

            userDefinedLatencyThresholds[func] = threshold;
            userDefinedThresholdNames[func] = str(number) + " " + units;

    # We were given an empty config file
    if (firstNonCommentLine):
        return False;

    return True;


def main():

    global arrowLeftImg;
    global arrowRightImg;
    global bucketDir;
    global perFuncDF;
    global targetParallelism;

    configSupplied = False;
    figuresForAllFunctions = [];

    # Set up the argument parser
    #
    parser = argparse.ArgumentParser(description=
                                 'Visualize operation log');
    parser.add_argument('files', type=str, nargs='*',
                        help='log files to process');
    parser.add_argument('-c', '--config', dest='configFile', default='');
    parser.add_argument('-d', '--dumpCleanData', dest='dumpCleanData',
                        default=False, action='store_true',
                        help='Dump clean log data. Clean data will \
                        not include incomplete function call records, \
                        e.g., if there is a function begin record, but\
                        no function end record, or vice versa.');
    parser.add_argument('-j', dest='jobParallelism', type=int,
                        default='0');

    args = parser.parse_args();

    if (len(args.files) == 0):
        parser.print_help();
        sys.exit(1);

    # Determine the target job parallelism
    if (args.jobParallelism > 0):
        targetParallelism = args.jobParallelism;
    else:
        targetParallelism = multiprocessing.cpu_count() * 2;

    # Get names of standard CSS colors that we will use for the legend
    initColorList();

    # Read the configuration file, if supplied.
    if (args.configFile != ''):
        configSupplied = parseConfigFile(args.configFile);

    if (not configSupplied):
        pluralSuffix = "";

        print(color.BLUE + color.BOLD +
              "Will deem as outliers all function instances whose runtime " +
              "was higher than the " + str(PERCENTILE * 100) +
              "th percentile for that function."
              + color.END);


    # Create a directory for the files that display the data summarized
    # in each bucket of the outlier histogram. We call these "bucket files".
    #
    if not os.path.exists(bucketDir):
        os.makedirs(bucketDir);

    # Parallelize this later, so we are working on files in parallel.
    for fname in args.files:
        processFile(fname, args.dumpCleanData);

    # Normalize all intervals by subtracting the first timestamp.
    normalizeIntervalData();

    # Generate plots of time series slices across all files for each bucket
    # in the outlier histogram. Save each cross-file slice to an HTML file.
    #
    fileNameList = generateTSSlicesForBuckets();

    totalFuncs = len(perFuncDF.keys());
    i = 0;
    # Generate a histogram of outlier durations
    for func in sorted(perFuncDF.keys()):
        funcDF = perFuncDF[func];
        figure = createOutlierHistogramForFunction(func, funcDF, fileNameList);
        if (figure is not None):
            figuresForAllFunctions.append(figure);

        i += 1;
        percentComplete = float(i) / float(totalFuncs) * 100;
        print(color.BLUE + color.BOLD + " Generating outlier histograms... "),
        sys.stdout.write("%d%% complete  \r" % (percentComplete) );
        sys.stdout.flush();

    print(color.END);
    reset_output();
    output_file(filename = "WT-outliers.html", title="Outlier histograms");
    show(column(figuresForAllFunctions));

if __name__ == '__main__':
    main()