summaryrefslogtreecommitdiff
path: root/third_party/js-1.7/jsdtoa.c
blob: 5b0b09ff9b47ad7979a837a00f419e265312c6ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 *
 * ***** BEGIN LICENSE BLOCK *****
 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
 *
 * The contents of this file are subject to the Mozilla Public License Version
 * 1.1 (the "License"); you may not use this file except in compliance with
 * the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * Software distributed under the License is distributed on an "AS IS" basis,
 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
 * for the specific language governing rights and limitations under the
 * License.
 *
 * The Original Code is Mozilla Communicator client code, released
 * March 31, 1998.
 *
 * The Initial Developer of the Original Code is
 * Netscape Communications Corporation.
 * Portions created by the Initial Developer are Copyright (C) 1998
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *
 * Alternatively, the contents of this file may be used under the terms of
 * either of the GNU General Public License Version 2 or later (the "GPL"),
 * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
 * in which case the provisions of the GPL or the LGPL are applicable instead
 * of those above. If you wish to allow use of your version of this file only
 * under the terms of either the GPL or the LGPL, and not to allow others to
 * use your version of this file under the terms of the MPL, indicate your
 * decision by deleting the provisions above and replace them with the notice
 * and other provisions required by the GPL or the LGPL. If you do not delete
 * the provisions above, a recipient may use your version of this file under
 * the terms of any one of the MPL, the GPL or the LGPL.
 *
 * ***** END LICENSE BLOCK ***** */

/*
 * Portable double to alphanumeric string and back converters.
 */
#include "jsstddef.h"
#include "jslibmath.h"
#include "jstypes.h"
#include "jsdtoa.h"
#include "jsprf.h"
#include "jsutil.h" /* Added by JSIFY */
#include "jspubtd.h"
#include "jsnum.h"

#ifdef JS_THREADSAFE
#include "prlock.h"
#endif

/****************************************************************
 *
 * The author of this software is David M. Gay.
 *
 * Copyright (c) 1991 by Lucent Technologies.
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose without fee is hereby granted, provided that this entire notice
 * is included in all copies of any software which is or includes a copy
 * or modification of this software and in all copies of the supporting
 * documentation for such software.
 *
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 *
 ***************************************************************/

/* Please send bug reports to
    David M. Gay
    Bell Laboratories, Room 2C-463
    600 Mountain Avenue
    Murray Hill, NJ 07974-0636
    U.S.A.
    dmg@bell-labs.com
 */

/* On a machine with IEEE extended-precision registers, it is
 * necessary to specify double-precision (53-bit) rounding precision
 * before invoking strtod or dtoa.  If the machine uses (the equivalent
 * of) Intel 80x87 arithmetic, the call
 *  _control87(PC_53, MCW_PC);
 * does this with many compilers.  Whether this or another call is
 * appropriate depends on the compiler; for this to work, it may be
 * necessary to #include "float.h" or another system-dependent header
 * file.
 */

/* strtod for IEEE-arithmetic machines.
 *
 * This strtod returns a nearest machine number to the input decimal
 * string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM).  With IEEE
 * arithmetic, ties are broken by the IEEE round-even rule.  Otherwise
 * ties are broken by biased rounding (add half and chop).
 *
 * Inspired loosely by William D. Clinger's paper "How to Read Floating
 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
 *
 * Modifications:
 *
 *  1. We only require IEEE double-precision
 *      arithmetic (not IEEE double-extended).
 *  2. We get by with floating-point arithmetic in a case that
 *      Clinger missed -- when we're computing d * 10^n
 *      for a small integer d and the integer n is not too
 *      much larger than 22 (the maximum integer k for which
 *      we can represent 10^k exactly), we may be able to
 *      compute (d*10^k) * 10^(e-k) with just one roundoff.
 *  3. Rather than a bit-at-a-time adjustment of the binary
 *      result in the hard case, we use floating-point
 *      arithmetic to determine the adjustment to within
 *      one bit; only in really hard cases do we need to
 *      compute a second residual.
 *  4. Because of 3., we don't need a large table of powers of 10
 *      for ten-to-e (just some small tables, e.g. of 10^k
 *      for 0 <= k <= 22).
 */

/*
 * #define IEEE_8087 for IEEE-arithmetic machines where the least
 *  significant byte has the lowest address.
 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
 *  significant byte has the lowest address.
 * #define Long int on machines with 32-bit ints and 64-bit longs.
 * #define Sudden_Underflow for IEEE-format machines without gradual
 *  underflow (i.e., that flush to zero on underflow).
 * #define No_leftright to omit left-right logic in fast floating-point
 *  computation of js_dtoa.
 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
 *  that use extended-precision instructions to compute rounded
 *  products and quotients) with IBM.
 * #define ROUND_BIASED for IEEE-format with biased rounding.
 * #define Inaccurate_Divide for IEEE-format with correctly rounded
 *  products but inaccurate quotients, e.g., for Intel i860.
 * #define JS_HAVE_LONG_LONG on machines that have a "long long"
 *  integer type (of >= 64 bits).  If long long is available and the name is
 *  something other than "long long", #define Llong to be the name,
 *  and if "unsigned Llong" does not work as an unsigned version of
 *  Llong, #define #ULLong to be the corresponding unsigned type.
 * #define Bad_float_h if your system lacks a float.h or if it does not
 *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
 *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
 *  if memory is available and otherwise does something you deem
 *  appropriate.  If MALLOC is undefined, malloc will be invoked
 *  directly -- and assumed always to succeed.
 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
 *  memory allocations from a private pool of memory when possible.
 *  When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
 *  unless #defined to be a different length.  This default length
 *  suffices to get rid of MALLOC calls except for unusual cases,
 *  such as decimal-to-binary conversion of a very long string of
 *  digits.
 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
 *  Infinity and NaN (case insensitively).  On some systems (e.g.,
 *  some HP systems), it may be necessary to #define NAN_WORD0
 *  appropriately -- to the most significant word of a quiet NaN.
 *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
 *  multiple threads.  In this case, you must provide (or suitably
 *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released
 *  by RELEASE_DTOA_LOCK().  (The second lock, accessed
 *  in pow5mult, ensures lazy evaluation of only one copy of high
 *  powers of 5; omitting this lock would introduce a small
 *  probability of wasting memory, but would otherwise be harmless.)
 *  You must also invoke freedtoa(s) to free the value s returned by
 *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
 * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
 *  avoids underflows on inputs whose result does not underflow.
 */
#ifdef IS_LITTLE_ENDIAN
#define IEEE_8087
#else
#define IEEE_MC68k
#endif

#ifndef Long
#define Long int32
#endif

#ifndef ULong
#define ULong uint32
#endif

#define Bug(errorMessageString) JS_ASSERT(!errorMessageString)

#include "stdlib.h"
#include "string.h"

#ifdef MALLOC
extern void *MALLOC(size_t);
#else
#define MALLOC malloc
#endif

#define Omit_Private_Memory
/* Private memory currently doesn't work with JS_THREADSAFE */
#ifndef Omit_Private_Memory
#ifndef PRIVATE_MEM
#define PRIVATE_MEM 2000
#endif
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
#endif

#ifdef Bad_float_h
#undef __STDC__

#define DBL_DIG 15
#define DBL_MAX_10_EXP 308
#define DBL_MAX_EXP 1024
#define FLT_RADIX 2
#define FLT_ROUNDS 1
#define DBL_MAX 1.7976931348623157e+308



#ifndef LONG_MAX
#define LONG_MAX 2147483647
#endif

#else /* ifndef Bad_float_h */
#include "float.h"
#endif /* Bad_float_h */

#ifndef __MATH_H__
#include "math.h"
#endif

#ifndef CONST
#define CONST const
#endif

#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
#endif

#define word0(x)        JSDOUBLE_HI32(x)
#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y)
#define word1(x)        JSDOUBLE_LO32(x)
#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y)

#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff)

/* #define P DBL_MANT_DIG */
/* Ten_pmax = floor(P*log(2)/log(5)) */
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */

#define Exp_shift  20
#define Exp_shift1 20
#define Exp_msk1    0x100000
#define Exp_msk11   0x100000
#define Exp_mask  0x7ff00000
#define P 53
#define Bias 1023
#define Emin (-1022)
#define Exp_1  0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask  0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask  0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
#ifndef NO_IEEE_Scale
#define Avoid_Underflow
#endif



#ifdef RND_PRODQUOT
#define rounded_product(a,b) a = rnd_prod(a, b)
#define rounded_quotient(a,b) a = rnd_quot(a, b)
extern double rnd_prod(double, double), rnd_quot(double, double);
#else
#define rounded_product(a,b) a *= b
#define rounded_quotient(a,b) a /= b
#endif

#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff

#ifndef JS_HAVE_LONG_LONG
#undef ULLong
#else   /* long long available */
#ifndef Llong
#define Llong JSInt64
#endif
#ifndef ULLong
#define ULLong JSUint64
#endif
#endif /* JS_HAVE_LONG_LONG */

#ifdef JS_THREADSAFE
#define MULTIPLE_THREADS
static PRLock *freelist_lock;
#define ACQUIRE_DTOA_LOCK()                                                   \
    JS_BEGIN_MACRO                                                            \
        if (!initialized)                                                     \
            InitDtoa();                                                       \
        PR_Lock(freelist_lock);                                               \
    JS_END_MACRO
#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock)
#else
#undef MULTIPLE_THREADS
#define ACQUIRE_DTOA_LOCK()   /*nothing*/
#define RELEASE_DTOA_LOCK()   /*nothing*/
#endif

#define Kmax 15

struct Bigint {
    struct Bigint *next;  /* Free list link */
    int32 k;              /* lg2(maxwds) */
    int32 maxwds;         /* Number of words allocated for x */
    int32 sign;           /* Zero if positive, 1 if negative.  Ignored by most Bigint routines! */
    int32 wds;            /* Actual number of words.  If value is nonzero, the most significant word must be nonzero. */
    ULong x[1];           /* wds words of number in little endian order */
};

#ifdef ENABLE_OOM_TESTING
/* Out-of-memory testing.  Use a good testcase (over and over) and then use
 * these routines to cause a memory failure on every possible Balloc allocation,
 * to make sure that all out-of-memory paths can be followed.  See bug 14044.
 */

static int allocationNum;               /* which allocation is next? */
static int desiredFailure;              /* which allocation should fail? */

/**
 * js_BigintTestingReset
 *
 * Call at the beginning of a test run to set the allocation failure position.
 * (Set to 0 to just have the engine count allocations without failing.)
 */
JS_PUBLIC_API(void)
js_BigintTestingReset(int newFailure)
{
    allocationNum = 0;
    desiredFailure = newFailure;
}

/**
 * js_BigintTestingWhere
 *
 * Report the current allocation position.  This is really only useful when you
 * want to learn how many allocations a test run has.
 */
JS_PUBLIC_API(int)
js_BigintTestingWhere()
{
    return allocationNum;
}


/*
 * So here's what you do: Set up a fantastic test case that exercises the
 * elements of the code you wish.  Set the failure point at 0 and run the test,
 * then get the allocation position.  This number is the number of allocations
 * your test makes.  Now loop from 1 to that number, setting the failure point
 * at each loop count, and run the test over and over, causing failures at each
 * step.  Any memory failure *should* cause a Out-Of-Memory exception; if it
 * doesn't, then there's still an error here.
 */
#endif

typedef struct Bigint Bigint;

static Bigint *freelist[Kmax+1];

/*
 * Allocate a Bigint with 2^k words.
 * This is not threadsafe. The caller must use thread locks
 */
static Bigint *Balloc(int32 k)
{
    int32 x;
    Bigint *rv;
#ifndef Omit_Private_Memory
    uint32 len;
#endif

#ifdef ENABLE_OOM_TESTING
    if (++allocationNum == desiredFailure) {
        printf("Forced Failing Allocation number %d\n", allocationNum);
        return NULL;
    }
#endif

    if ((rv = freelist[k]) != NULL)
        freelist[k] = rv->next;
    if (rv == NULL) {
        x = 1 << k;
#ifdef Omit_Private_Memory
        rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
#else
        len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
            /sizeof(double);
        if (pmem_next - private_mem + len <= PRIVATE_mem) {
            rv = (Bigint*)pmem_next;
            pmem_next += len;
            }
        else
            rv = (Bigint*)MALLOC(len*sizeof(double));
#endif
        if (!rv)
            return NULL;
        rv->k = k;
        rv->maxwds = x;
    }
    rv->sign = rv->wds = 0;
    return rv;
}

static void Bfree(Bigint *v)
{
    if (v) {
        v->next = freelist[v->k];
        freelist[v->k] = v;
    }
}

#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
                          y->wds*sizeof(Long) + 2*sizeof(int32))

/* Return b*m + a.  Deallocate the old b.  Both a and m must be between 0 and
 * 65535 inclusive.  NOTE: old b is deallocated on memory failure.
 */
static Bigint *multadd(Bigint *b, int32 m, int32 a)
{
    int32 i, wds;
#ifdef ULLong
    ULong *x;
    ULLong carry, y;
#else
    ULong carry, *x, y;
    ULong xi, z;
#endif
    Bigint *b1;

#ifdef ENABLE_OOM_TESTING
    if (++allocationNum == desiredFailure) {
        /* Faux allocation, because I'm not getting all of the failure paths
         * without it.
         */
        printf("Forced Failing Allocation number %d\n", allocationNum);
        Bfree(b);
        return NULL;
    }
#endif

    wds = b->wds;
    x = b->x;
    i = 0;
    carry = a;
    do {
#ifdef ULLong
        y = *x * (ULLong)m + carry;
        carry = y >> 32;
        *x++ = (ULong)(y & 0xffffffffUL);
#else
        xi = *x;
        y = (xi & 0xffff) * m + carry;
        z = (xi >> 16) * m + (y >> 16);
        carry = z >> 16;
        *x++ = (z << 16) + (y & 0xffff);
#endif
    }
    while(++i < wds);
    if (carry) {
        if (wds >= b->maxwds) {
            b1 = Balloc(b->k+1);
            if (!b1) {
                Bfree(b);
                return NULL;
            }
            Bcopy(b1, b);
            Bfree(b);
            b = b1;
        }
        b->x[wds++] = (ULong)carry;
        b->wds = wds;
    }
    return b;
}

static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
{
    Bigint *b;
    int32 i, k;
    Long x, y;

    x = (nd + 8) / 9;
    for(k = 0, y = 1; x > y; y <<= 1, k++) ;
    b = Balloc(k);
    if (!b)
        return NULL;
    b->x[0] = y9;
    b->wds = 1;

    i = 9;
    if (9 < nd0) {
        s += 9;
        do {
            b = multadd(b, 10, *s++ - '0');
            if (!b)
                return NULL;
        } while(++i < nd0);
        s++;
    }
    else
        s += 10;
    for(; i < nd; i++) {
        b = multadd(b, 10, *s++ - '0');
        if (!b)
            return NULL;
    }
    return b;
}


/* Return the number (0 through 32) of most significant zero bits in x. */
static int32 hi0bits(register ULong x)
{
    register int32 k = 0;

    if (!(x & 0xffff0000)) {
        k = 16;
        x <<= 16;
    }
    if (!(x & 0xff000000)) {
        k += 8;
        x <<= 8;
    }
    if (!(x & 0xf0000000)) {
        k += 4;
        x <<= 4;
    }
    if (!(x & 0xc0000000)) {
        k += 2;
        x <<= 2;
    }
    if (!(x & 0x80000000)) {
        k++;
        if (!(x & 0x40000000))
            return 32;
    }
    return k;
}


/* Return the number (0 through 32) of least significant zero bits in y.
 * Also shift y to the right past these 0 through 32 zeros so that y's
 * least significant bit will be set unless y was originally zero. */
static int32 lo0bits(ULong *y)
{
    register int32 k;
    register ULong x = *y;

    if (x & 7) {
        if (x & 1)
            return 0;
        if (x & 2) {
            *y = x >> 1;
            return 1;
        }
        *y = x >> 2;
        return 2;
    }
    k = 0;
    if (!(x & 0xffff)) {
        k = 16;
        x >>= 16;
    }
    if (!(x & 0xff)) {
        k += 8;
        x >>= 8;
    }
    if (!(x & 0xf)) {
        k += 4;
        x >>= 4;
    }
    if (!(x & 0x3)) {
        k += 2;
        x >>= 2;
    }
    if (!(x & 1)) {
        k++;
        x >>= 1;
        if (!x & 1)
            return 32;
    }
    *y = x;
    return k;
}

/* Return a new Bigint with the given integer value, which must be nonnegative. */
static Bigint *i2b(int32 i)
{
    Bigint *b;

    b = Balloc(1);
    if (!b)
        return NULL;
    b->x[0] = i;
    b->wds = 1;
    return b;
}

/* Return a newly allocated product of a and b. */
static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
{
    CONST Bigint *t;
    Bigint *c;
    int32 k, wa, wb, wc;
    ULong y;
    ULong *xc, *xc0, *xce;
    CONST ULong *x, *xa, *xae, *xb, *xbe;
#ifdef ULLong
    ULLong carry, z;
#else
    ULong carry, z;
    ULong z2;
#endif

    if (a->wds < b->wds) {
        t = a;
        a = b;
        b = t;
    }
    k = a->k;
    wa = a->wds;
    wb = b->wds;
    wc = wa + wb;
    if (wc > a->maxwds)
        k++;
    c = Balloc(k);
    if (!c)
        return NULL;
    for(xc = c->x, xce = xc + wc; xc < xce; xc++)
        *xc = 0;
    xa = a->x;
    xae = xa + wa;
    xb = b->x;
    xbe = xb + wb;
    xc0 = c->x;
#ifdef ULLong
    for(; xb < xbe; xc0++) {
        if ((y = *xb++) != 0) {
            x = xa;
            xc = xc0;
            carry = 0;
            do {
                z = *x++ * (ULLong)y + *xc + carry;
                carry = z >> 32;
                *xc++ = (ULong)(z & 0xffffffffUL);
                }
                while(x < xae);
            *xc = (ULong)carry;
            }
        }
#else
    for(; xb < xbe; xb++, xc0++) {
        if ((y = *xb & 0xffff) != 0) {
            x = xa;
            xc = xc0;
            carry = 0;
            do {
                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
                carry = z >> 16;
                z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
                carry = z2 >> 16;
                Storeinc(xc, z2, z);
            }
            while(x < xae);
            *xc = carry;
        }
        if ((y = *xb >> 16) != 0) {
            x = xa;
            xc = xc0;
            carry = 0;
            z2 = *xc;
            do {
                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
                carry = z >> 16;
                Storeinc(xc, z, z2);
                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
                carry = z2 >> 16;
            }
            while(x < xae);
            *xc = z2;
        }
    }
#endif
    for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
    c->wds = wc;
    return c;
}

/*
 * 'p5s' points to a linked list of Bigints that are powers of 5.
 * This list grows on demand, and it can only grow: it won't change
 * in any other way.  So if we read 'p5s' or the 'next' field of
 * some Bigint on the list, and it is not NULL, we know it won't
 * change to NULL or some other value.  Only when the value of
 * 'p5s' or 'next' is NULL do we need to acquire the lock and add
 * a new Bigint to the list.
 */

static Bigint *p5s;

#ifdef JS_THREADSAFE
static PRLock *p5s_lock;
#endif

/* Return b * 5^k.  Deallocate the old b.  k must be nonnegative. */
/* NOTE: old b is deallocated on memory failure. */
static Bigint *pow5mult(Bigint *b, int32 k)
{
    Bigint *b1, *p5, *p51;
    int32 i;
    static CONST int32 p05[3] = { 5, 25, 125 };

    if ((i = k & 3) != 0) {
        b = multadd(b, p05[i-1], 0);
        if (!b)
            return NULL;
    }

    if (!(k >>= 2))
        return b;
    if (!(p5 = p5s)) {
#ifdef JS_THREADSAFE
        /*
         * We take great care to not call i2b() and Bfree()
         * while holding the lock.
         */
        Bigint *wasted_effort = NULL;
        p5 = i2b(625);
        if (!p5) {
            Bfree(b);
            return NULL;
        }
        /* lock and check again */
        PR_Lock(p5s_lock);
        if (!p5s) {
            /* first time */
            p5s = p5;
            p5->next = 0;
        } else {
            /* some other thread just beat us */
            wasted_effort = p5;
            p5 = p5s;
        }
        PR_Unlock(p5s_lock);
        if (wasted_effort) {
            Bfree(wasted_effort);
        }
#else
        /* first time */
        p5 = p5s = i2b(625);
        if (!p5) {
            Bfree(b);
            return NULL;
        }
        p5->next = 0;
#endif
    }
    for(;;) {
        if (k & 1) {
            b1 = mult(b, p5);
            Bfree(b);
            if (!b1)
                return NULL;
            b = b1;
        }
        if (!(k >>= 1))
            break;
        if (!(p51 = p5->next)) {
#ifdef JS_THREADSAFE
            Bigint *wasted_effort = NULL;
            p51 = mult(p5, p5);
            if (!p51) {
                Bfree(b);
                return NULL;
            }
            PR_Lock(p5s_lock);
            if (!p5->next) {
                p5->next = p51;
                p51->next = 0;
            } else {
                wasted_effort = p51;
                p51 = p5->next;
            }
            PR_Unlock(p5s_lock);
            if (wasted_effort) {
                Bfree(wasted_effort);
            }
#else
            p51 = mult(p5,p5);
            if (!p51) {
                Bfree(b);
                return NULL;
            }
            p51->next = 0;
            p5->next = p51;
#endif
        }
        p5 = p51;
    }
    return b;
}

/* Return b * 2^k.  Deallocate the old b.  k must be nonnegative.
 * NOTE: on memory failure, old b is deallocated. */
static Bigint *lshift(Bigint *b, int32 k)
{
    int32 i, k1, n, n1;
    Bigint *b1;
    ULong *x, *x1, *xe, z;

    n = k >> 5;
    k1 = b->k;
    n1 = n + b->wds + 1;
    for(i = b->maxwds; n1 > i; i <<= 1)
        k1++;
    b1 = Balloc(k1);
    if (!b1)
        goto done;
    x1 = b1->x;
    for(i = 0; i < n; i++)
        *x1++ = 0;
    x = b->x;
    xe = x + b->wds;
    if (k &= 0x1f) {
        k1 = 32 - k;
        z = 0;
        do {
            *x1++ = *x << k | z;
            z = *x++ >> k1;
        }
        while(x < xe);
        if ((*x1 = z) != 0)
            ++n1;
    }
    else do
        *x1++ = *x++;
         while(x < xe);
    b1->wds = n1 - 1;
done:
    Bfree(b);
    return b1;
}

/* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
static int32 cmp(Bigint *a, Bigint *b)
{
    ULong *xa, *xa0, *xb, *xb0;
    int32 i, j;

    i = a->wds;
    j = b->wds;
#ifdef DEBUG
    if (i > 1 && !a->x[i-1])
        Bug("cmp called with a->x[a->wds-1] == 0");
    if (j > 1 && !b->x[j-1])
        Bug("cmp called with b->x[b->wds-1] == 0");
#endif
    if (i -= j)
        return i;
    xa0 = a->x;
    xa = xa0 + j;
    xb0 = b->x;
    xb = xb0 + j;
    for(;;) {
        if (*--xa != *--xb)
            return *xa < *xb ? -1 : 1;
        if (xa <= xa0)
            break;
    }
    return 0;
}

static Bigint *diff(Bigint *a, Bigint *b)
{
    Bigint *c;
    int32 i, wa, wb;
    ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef ULLong
    ULLong borrow, y;
#else
    ULong borrow, y;
    ULong z;
#endif

    i = cmp(a,b);
    if (!i) {
        c = Balloc(0);
        if (!c)
            return NULL;
        c->wds = 1;
        c->x[0] = 0;
        return c;
    }
    if (i < 0) {
        c = a;
        a = b;
        b = c;
        i = 1;
    }
    else
        i = 0;
    c = Balloc(a->k);
    if (!c)
        return NULL;
    c->sign = i;
    wa = a->wds;
    xa = a->x;
    xae = xa + wa;
    wb = b->wds;
    xb = b->x;
    xbe = xb + wb;
    xc = c->x;
    borrow = 0;
#ifdef ULLong
    do {
        y = (ULLong)*xa++ - *xb++ - borrow;
        borrow = y >> 32 & 1UL;
        *xc++ = (ULong)(y & 0xffffffffUL);
        }
        while(xb < xbe);
    while(xa < xae) {
        y = *xa++ - borrow;
        borrow = y >> 32 & 1UL;
        *xc++ = (ULong)(y & 0xffffffffUL);
        }
#else
    do {
        y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
        borrow = (y & 0x10000) >> 16;
        z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
        borrow = (z & 0x10000) >> 16;
        Storeinc(xc, z, y);
        }
        while(xb < xbe);
    while(xa < xae) {
        y = (*xa & 0xffff) - borrow;
        borrow = (y & 0x10000) >> 16;
        z = (*xa++ >> 16) - borrow;
        borrow = (z & 0x10000) >> 16;
        Storeinc(xc, z, y);
        }
#endif
    while(!*--xc)
        wa--;
    c->wds = wa;
    return c;
}

/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
static double ulp(double x)
{
    register Long L;
    double a = 0;

    L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Sudden_Underflow
    if (L > 0) {
#endif
        set_word0(a, L);
        set_word1(a, 0);
#ifndef Sudden_Underflow
    }
    else {
        L = -L >> Exp_shift;
        if (L < Exp_shift) {
            set_word0(a, 0x80000 >> L);
            set_word1(a, 0);
        }
        else {
            set_word0(a, 0);
            L -= Exp_shift;
            set_word1(a, L >= 31 ? 1 : 1 << (31 - L));
        }
    }
#endif
    return a;
}


static double b2d(Bigint *a, int32 *e)
{
    ULong *xa, *xa0, w, y, z;
    int32 k;
    double d = 0;
#define d0 word0(d)
#define d1 word1(d)
#define set_d0(x) set_word0(d, x)
#define set_d1(x) set_word1(d, x)

    xa0 = a->x;
    xa = xa0 + a->wds;
    y = *--xa;
#ifdef DEBUG
    if (!y) Bug("zero y in b2d");
#endif
    k = hi0bits(y);
    *e = 32 - k;
    if (k < Ebits) {
        set_d0(Exp_1 | y >> (Ebits - k));
        w = xa > xa0 ? *--xa : 0;
        set_d1(y << (32-Ebits + k) | w >> (Ebits - k));
        goto ret_d;
    }
    z = xa > xa0 ? *--xa : 0;
    if (k -= Ebits) {
        set_d0(Exp_1 | y << k | z >> (32 - k));
        y = xa > xa0 ? *--xa : 0;
        set_d1(z << k | y >> (32 - k));
    }
    else {
        set_d0(Exp_1 | y);
        set_d1(z);
    }
  ret_d:
#undef d0
#undef d1
#undef set_d0
#undef set_d1
    return d;
}


/* Convert d into the form b*2^e, where b is an odd integer.  b is the returned
 * Bigint and e is the returned binary exponent.  Return the number of significant
 * bits in b in bits.  d must be finite and nonzero. */
static Bigint *d2b(double d, int32 *e, int32 *bits)
{
    Bigint *b;
    int32 de, i, k;
    ULong *x, y, z;
#define d0 word0(d)
#define d1 word1(d)
#define set_d0(x) set_word0(d, x)
#define set_d1(x) set_word1(d, x)

    b = Balloc(1);
    if (!b)
        return NULL;
    x = b->x;

    z = d0 & Frac_mask;
    set_d0(d0 & 0x7fffffff);  /* clear sign bit, which we ignore */
#ifdef Sudden_Underflow
    de = (int32)(d0 >> Exp_shift);
    z |= Exp_msk11;
#else
    if ((de = (int32)(d0 >> Exp_shift)) != 0)
        z |= Exp_msk1;
#endif
    if ((y = d1) != 0) {
        if ((k = lo0bits(&y)) != 0) {
            x[0] = y | z << (32 - k);
            z >>= k;
        }
        else
            x[0] = y;
        i = b->wds = (x[1] = z) ? 2 : 1;
    }
    else {
        JS_ASSERT(z);
        k = lo0bits(&z);
        x[0] = z;
        i = b->wds = 1;
        k += 32;
    }
#ifndef Sudden_Underflow
    if (de) {
#endif
        *e = de - Bias - (P-1) + k;
        *bits = P - k;
#ifndef Sudden_Underflow
    }
    else {
        *e = de - Bias - (P-1) + 1 + k;
        *bits = 32*i - hi0bits(x[i-1]);
    }
#endif
    return b;
}
#undef d0
#undef d1
#undef set_d0
#undef set_d1


static double ratio(Bigint *a, Bigint *b)
{
    double da, db;
    int32 k, ka, kb;

    da = b2d(a, &ka);
    db = b2d(b, &kb);
    k = ka - kb + 32*(a->wds - b->wds);
    if (k > 0)
        set_word0(da, word0(da) + k*Exp_msk1);
    else {
        k = -k;
        set_word0(db, word0(db) + k*Exp_msk1);
    }
    return da / db;
}

static CONST double
tens[] = {
    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
    1e20, 1e21, 1e22
};

static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
#ifdef Avoid_Underflow
        9007199254740992.e-256
#else
        1e-256
#endif
        };
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
/* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
#define Scale_Bit 0x10
#define n_bigtens 5


#ifdef INFNAN_CHECK

#ifndef NAN_WORD0
#define NAN_WORD0 0x7ff80000
#endif

#ifndef NAN_WORD1
#define NAN_WORD1 0
#endif

static int match(CONST char **sp, char *t)
{
    int c, d;
    CONST char *s = *sp;

    while(d = *t++) {
        if ((c = *++s) >= 'A' && c <= 'Z')
            c += 'a' - 'A';
        if (c != d)
            return 0;
        }
    *sp = s + 1;
    return 1;
    }
#endif /* INFNAN_CHECK */


#ifdef JS_THREADSAFE
static JSBool initialized = JS_FALSE;

/* hacked replica of nspr _PR_InitDtoa */
static void InitDtoa(void)
{
    freelist_lock = PR_NewLock();
        p5s_lock = PR_NewLock();
    initialized = JS_TRUE;
}
#endif

void js_FinishDtoa(void)
{
    int count;
    Bigint *temp;

#ifdef JS_THREADSAFE
    if (initialized == JS_TRUE) {
        PR_DestroyLock(freelist_lock);
        PR_DestroyLock(p5s_lock);
        initialized = JS_FALSE;
    }
#endif

    /* clear down the freelist array and p5s */

    /* static Bigint *freelist[Kmax+1]; */
    for (count = 0; count <= Kmax; count++) {
        Bigint **listp = &freelist[count];
        while ((temp = *listp) != NULL) {
            *listp = temp->next;
            free(temp);
        }
        freelist[count] = NULL;
    }

    /* static Bigint *p5s; */
    while (p5s) {
        temp = p5s;
        p5s = p5s->next;
        free(temp);
    }
}

/* nspr2 watcom bug ifdef omitted */

JS_FRIEND_API(double)
JS_strtod(CONST char *s00, char **se, int *err)
{
    int32 scale;
    int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
        e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
    CONST char *s, *s0, *s1;
    double aadj, aadj1, adj, rv, rv0;
    Long L;
    ULong y, z;
    Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;

    *err = 0;

    bb = bd = bs = delta = NULL;
    sign = nz0 = nz = 0;
    rv = 0.;

    /* Locking for Balloc's shared buffers that will be used in this block */
    ACQUIRE_DTOA_LOCK();

    for(s = s00;;s++) switch(*s) {
    case '-':
        sign = 1;
        /* no break */
    case '+':
        if (*++s)
            goto break2;
        /* no break */
    case 0:
        s = s00;
        goto ret;
    case '\t':
    case '\n':
    case '\v':
    case '\f':
    case '\r':
    case ' ':
        continue;
    default:
        goto break2;
    }
break2:

    if (*s == '0') {
        nz0 = 1;
        while(*++s == '0') ;
        if (!*s)
            goto ret;
    }
    s0 = s;
    y = z = 0;
    for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
        if (nd < 9)
            y = 10*y + c - '0';
        else if (nd < 16)
            z = 10*z + c - '0';
    nd0 = nd;
    if (c == '.') {
        c = *++s;
        if (!nd) {
            for(; c == '0'; c = *++s)
                nz++;
            if (c > '0' && c <= '9') {
                s0 = s;
                nf += nz;
                nz = 0;
                goto have_dig;
            }
            goto dig_done;
        }
        for(; c >= '0' && c <= '9'; c = *++s) {
        have_dig:
            nz++;
            if (c -= '0') {
                nf += nz;
                for(i = 1; i < nz; i++)
                    if (nd++ < 9)
                        y *= 10;
                    else if (nd <= DBL_DIG + 1)
                        z *= 10;
                if (nd++ < 9)
                    y = 10*y + c;
                else if (nd <= DBL_DIG + 1)
                    z = 10*z + c;
                nz = 0;
            }
        }
    }
dig_done:
    e = 0;
    if (c == 'e' || c == 'E') {
        if (!nd && !nz && !nz0) {
            s = s00;
            goto ret;
        }
        s00 = s;
        esign = 0;
        switch(c = *++s) {
        case '-':
            esign = 1;
        case '+':
            c = *++s;
        }
        if (c >= '0' && c <= '9') {
            while(c == '0')
                c = *++s;
            if (c > '0' && c <= '9') {
                L = c - '0';
                s1 = s;
                while((c = *++s) >= '0' && c <= '9')
                    L = 10*L + c - '0';
                if (s - s1 > 8 || L > 19999)
                    /* Avoid confusion from exponents
                     * so large that e might overflow.
                     */
                    e = 19999; /* safe for 16 bit ints */
                else
                    e = (int32)L;
                if (esign)
                    e = -e;
            }
            else
                e = 0;
        }
        else
            s = s00;
    }
    if (!nd) {
        if (!nz && !nz0) {
#ifdef INFNAN_CHECK
            /* Check for Nan and Infinity */
            switch(c) {
              case 'i':
              case 'I':
                if (match(&s,"nfinity")) {
                    set_word0(rv, 0x7ff00000);
                    set_word1(rv, 0);
                    goto ret;
                    }
                break;
              case 'n':
              case 'N':
                if (match(&s, "an")) {
                    set_word0(rv, NAN_WORD0);
                    set_word1(rv, NAN_WORD1);
                    goto ret;
                    }
              }
#endif /* INFNAN_CHECK */
            s = s00;
            }
        goto ret;
    }
    e1 = e -= nf;

    /* Now we have nd0 digits, starting at s0, followed by a
     * decimal point, followed by nd-nd0 digits.  The number we're
     * after is the integer represented by those digits times
     * 10**e */

    if (!nd0)
        nd0 = nd;
    k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
    rv = y;
    if (k > 9)
        rv = tens[k - 9] * rv + z;
    bd0 = 0;
    if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
        && FLT_ROUNDS == 1
#endif
        ) {
        if (!e)
            goto ret;
        if (e > 0) {
            if (e <= Ten_pmax) {
                /* rv = */ rounded_product(rv, tens[e]);
                goto ret;
            }
            i = DBL_DIG - nd;
            if (e <= Ten_pmax + i) {
                /* A fancier test would sometimes let us do
                 * this for larger i values.
                 */
                e -= i;
                rv *= tens[i];
                /* rv = */ rounded_product(rv, tens[e]);
                goto ret;
            }
        }
#ifndef Inaccurate_Divide
        else if (e >= -Ten_pmax) {
            /* rv = */ rounded_quotient(rv, tens[-e]);
            goto ret;
        }
#endif
    }
    e1 += nd - k;

    scale = 0;

    /* Get starting approximation = rv * 10**e1 */

    if (e1 > 0) {
        if ((i = e1 & 15) != 0)
            rv *= tens[i];
        if (e1 &= ~15) {
            if (e1 > DBL_MAX_10_EXP) {
            ovfl:
                *err = JS_DTOA_ERANGE;
#ifdef __STDC__
                rv = HUGE_VAL;
#else
                /* Can't trust HUGE_VAL */
                set_word0(rv, Exp_mask);
                set_word1(rv, 0);
#endif
                if (bd0)
                    goto retfree;
                goto ret;
            }
            e1 >>= 4;
            for(j = 0; e1 > 1; j++, e1 >>= 1)
                if (e1 & 1)
                    rv *= bigtens[j];
            /* The last multiplication could overflow. */
            set_word0(rv, word0(rv) - P*Exp_msk1);
            rv *= bigtens[j];
            if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
                goto ovfl;
            if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
                /* set to largest number */
                /* (Can't trust DBL_MAX) */
                set_word0(rv, Big0);
                set_word1(rv, Big1);
                }
            else
                set_word0(rv, word0(rv) + P*Exp_msk1);
            }
    }
    else if (e1 < 0) {
        e1 = -e1;
        if ((i = e1 & 15) != 0)
            rv /= tens[i];
        if (e1 &= ~15) {
            e1 >>= 4;
            if (e1 >= 1 << n_bigtens)
                goto undfl;
#ifdef Avoid_Underflow
            if (e1 & Scale_Bit)
                scale = P;
            for(j = 0; e1 > 0; j++, e1 >>= 1)
                if (e1 & 1)
                    rv *= tinytens[j];
            if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
                        >> Exp_shift)) > 0) {
                /* scaled rv is denormal; zap j low bits */
                if (j >= 32) {
                    set_word1(rv, 0);
                    set_word0(rv, word0(rv) & (0xffffffff << (j-32)));
                    if (!word0(rv))
                        set_word0(rv, 1);
                    }
                else
                    set_word1(rv, word1(rv) & (0xffffffff << j));
                }
#else
            for(j = 0; e1 > 1; j++, e1 >>= 1)
                if (e1 & 1)
                    rv *= tinytens[j];
            /* The last multiplication could underflow. */
            rv0 = rv;
            rv *= tinytens[j];
            if (!rv) {
                rv = 2.*rv0;
                rv *= tinytens[j];
#endif
                if (!rv) {
                undfl:
                    rv = 0.;
                    *err = JS_DTOA_ERANGE;
                    if (bd0)
                        goto retfree;
                    goto ret;
                }
#ifndef Avoid_Underflow
                set_word0(rv, Tiny0);
                set_word1(rv, Tiny1);
                /* The refinement below will clean
                 * this approximation up.
                 */
            }
#endif
        }
    }

    /* Now the hard part -- adjusting rv to the correct value.*/

    /* Put digits into bd: true value = bd * 10^e */

    bd0 = s2b(s0, nd0, nd, y);
    if (!bd0)
        goto nomem;

    for(;;) {
        bd = Balloc(bd0->k);
        if (!bd)
            goto nomem;
        Bcopy(bd, bd0);
        bb = d2b(rv, &bbe, &bbbits);    /* rv = bb * 2^bbe */
        if (!bb)
            goto nomem;
        bs = i2b(1);
        if (!bs)
            goto nomem;

        if (e >= 0) {
            bb2 = bb5 = 0;
            bd2 = bd5 = e;
        }
        else {
            bb2 = bb5 = -e;
            bd2 = bd5 = 0;
        }
        if (bbe >= 0)
            bb2 += bbe;
        else
            bd2 -= bbe;
        bs2 = bb2;
#ifdef Sudden_Underflow
        j = P + 1 - bbbits;
#else
#ifdef Avoid_Underflow
        j = bbe - scale;
#else
        j = bbe;
#endif
        i = j + bbbits - 1; /* logb(rv) */
        if (i < Emin)   /* denormal */
            j += P - Emin;
        else
            j = P + 1 - bbbits;
#endif
        bb2 += j;
        bd2 += j;
#ifdef Avoid_Underflow
        bd2 += scale;
#endif
        i = bb2 < bd2 ? bb2 : bd2;
        if (i > bs2)
            i = bs2;
        if (i > 0) {
            bb2 -= i;
            bd2 -= i;
            bs2 -= i;
        }
        if (bb5 > 0) {
            bs = pow5mult(bs, bb5);
            if (!bs)
                goto nomem;
            bb1 = mult(bs, bb);
            if (!bb1)
                goto nomem;
            Bfree(bb);
            bb = bb1;
        }
        if (bb2 > 0) {
            bb = lshift(bb, bb2);
            if (!bb)
                goto nomem;
        }
        if (bd5 > 0) {
            bd = pow5mult(bd, bd5);
            if (!bd)
                goto nomem;
        }
        if (bd2 > 0) {
            bd = lshift(bd, bd2);
            if (!bd)
                goto nomem;
        }
        if (bs2 > 0) {
            bs = lshift(bs, bs2);
            if (!bs)
                goto nomem;
        }
        delta = diff(bb, bd);
        if (!delta)
            goto nomem;
        dsign = delta->sign;
        delta->sign = 0;
        i = cmp(delta, bs);
        if (i < 0) {
            /* Error is less than half an ulp -- check for
             * special case of mantissa a power of two.
             */
            if (dsign || word1(rv) || word0(rv) & Bndry_mask
#ifdef Avoid_Underflow
             || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
#else
             || (word0(rv) & Exp_mask) <= Exp_msk1
#endif
                ) {
#ifdef Avoid_Underflow
                if (!delta->x[0] && delta->wds == 1)
                    dsign = 2;
#endif
                break;
                }
            delta = lshift(delta,Log2P);
            if (!delta)
                goto nomem;
            if (cmp(delta, bs) > 0)
                goto drop_down;
            break;
        }
        if (i == 0) {
            /* exactly half-way between */
            if (dsign) {
                if ((word0(rv) & Bndry_mask1) == Bndry_mask1
                    &&  word1(rv) == 0xffffffff) {
                    /*boundary case -- increment exponent*/
                    set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1);
                    set_word1(rv, 0);
#ifdef Avoid_Underflow
                    dsign = 0;
#endif
                    break;
                }
            }
            else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
#ifdef Avoid_Underflow
                dsign = 2;
#endif
            drop_down:
                /* boundary case -- decrement exponent */
#ifdef Sudden_Underflow
                L = word0(rv) & Exp_mask;
                if (L <= Exp_msk1)
                    goto undfl;
                L -= Exp_msk1;
#else
                L = (word0(rv) & Exp_mask) - Exp_msk1;
#endif
                set_word0(rv, L | Bndry_mask1);
                set_word1(rv, 0xffffffff);
                break;
            }
#ifndef ROUND_BIASED
            if (!(word1(rv) & LSB))
                break;
#endif
            if (dsign)
                rv += ulp(rv);
#ifndef ROUND_BIASED
            else {
                rv -= ulp(rv);
#ifndef Sudden_Underflow
                if (!rv)
                    goto undfl;
#endif
            }
#ifdef Avoid_Underflow
            dsign = 1 - dsign;
#endif
#endif
            break;
        }
        if ((aadj = ratio(delta, bs)) <= 2.) {
            if (dsign)
                aadj = aadj1 = 1.;
            else if (word1(rv) || word0(rv) & Bndry_mask) {
#ifndef Sudden_Underflow
                if (word1(rv) == Tiny1 && !word0(rv))
                    goto undfl;
#endif
                aadj = 1.;
                aadj1 = -1.;
            }
            else {
                /* special case -- power of FLT_RADIX to be */
                /* rounded down... */

                if (aadj < 2./FLT_RADIX)
                    aadj = 1./FLT_RADIX;
                else
                    aadj *= 0.5;
                aadj1 = -aadj;
            }
        }
        else {
            aadj *= 0.5;
            aadj1 = dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
            switch(FLT_ROUNDS) {
            case 2: /* towards +infinity */
                aadj1 -= 0.5;
                break;
            case 0: /* towards 0 */
            case 3: /* towards -infinity */
                aadj1 += 0.5;
            }
#else
            if (FLT_ROUNDS == 0)
                aadj1 += 0.5;
#endif
        }
        y = word0(rv) & Exp_mask;

        /* Check for overflow */

        if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
            rv0 = rv;
            set_word0(rv, word0(rv) - P*Exp_msk1);
            adj = aadj1 * ulp(rv);
            rv += adj;
            if ((word0(rv) & Exp_mask) >=
                Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
                if (word0(rv0) == Big0 && word1(rv0) == Big1)
                    goto ovfl;
                set_word0(rv, Big0);
                set_word1(rv, Big1);
                goto cont;
            }
            else
                set_word0(rv, word0(rv) + P*Exp_msk1);
        }
        else {
#ifdef Sudden_Underflow
            if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
                rv0 = rv;
                set_word0(rv, word0(rv) + P*Exp_msk1);
                adj = aadj1 * ulp(rv);
                rv += adj;
                    if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
                        {
                            if (word0(rv0) == Tiny0
                                && word1(rv0) == Tiny1)
                                goto undfl;
                            set_word0(rv, Tiny0);
                            set_word1(rv, Tiny1);
                            goto cont;
                        }
                    else
                        set_word0(rv, word0(rv) - P*Exp_msk1);
            }
            else {
                adj = aadj1 * ulp(rv);
                rv += adj;
            }
#else
            /* Compute adj so that the IEEE rounding rules will
             * correctly round rv + adj in some half-way cases.
             * If rv * ulp(rv) is denormalized (i.e.,
             * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
             * trouble from bits lost to denormalization;
             * example: 1.2e-307 .
             */
#ifdef Avoid_Underflow
            if (y <= P*Exp_msk1 && aadj > 1.)
#else
            if (y <= (P-1)*Exp_msk1 && aadj > 1.)
#endif
                {
                aadj1 = (double)(int32)(aadj + 0.5);
                if (!dsign)
                    aadj1 = -aadj1;
            }
#ifdef Avoid_Underflow
            if (scale && y <= P*Exp_msk1)
                set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y);
#endif
            adj = aadj1 * ulp(rv);
            rv += adj;
#endif
        }
        z = word0(rv) & Exp_mask;
#ifdef Avoid_Underflow
        if (!scale)
#endif
        if (y == z) {
            /* Can we stop now? */
            L = (Long)aadj;
            aadj -= L;
            /* The tolerances below are conservative. */
            if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
                if (aadj < .4999999 || aadj > .5000001)
                    break;
            }
            else if (aadj < .4999999/FLT_RADIX)
                break;
        }
    cont:
        Bfree(bb);
        Bfree(bd);
        Bfree(bs);
        Bfree(delta);
        bb = bd = bs = delta = NULL;
    }
#ifdef Avoid_Underflow
    if (scale) {
        rv0 = 0.;
        set_word0(rv0, Exp_1 - P*Exp_msk1);
        set_word1(rv0, 0);
        if ((word0(rv) & Exp_mask) <= P*Exp_msk1
              && word1(rv) & 1
              && dsign != 2) {
            if (dsign) {
#ifdef Sudden_Underflow
                /* rv will be 0, but this would give the  */
                /* right result if only rv *= rv0 worked. */
                set_word0(rv, word0(rv) + P*Exp_msk1);
                set_word0(rv0, Exp_1 - 2*P*Exp_msk1);
#endif
                rv += ulp(rv);
                }
            else
                set_word1(rv, word1(rv) & ~1);
        }
        rv *= rv0;
    }
#endif /* Avoid_Underflow */
retfree:
    Bfree(bb);
    Bfree(bd);
    Bfree(bs);
    Bfree(bd0);
    Bfree(delta);
ret:
    RELEASE_DTOA_LOCK();
    if (se)
        *se = (char *)s;
    return sign ? -rv : rv;

nomem:
    Bfree(bb);
    Bfree(bd);
    Bfree(bs);
    Bfree(bd0);
    Bfree(delta);
    RELEASE_DTOA_LOCK();
    *err = JS_DTOA_ENOMEM;
    return 0;
}


/* Return floor(b/2^k) and set b to be the remainder.  The returned quotient must be less than 2^32. */
static uint32 quorem2(Bigint *b, int32 k)
{
    ULong mask;
    ULong result;
    ULong *bx, *bxe;
    int32 w;
    int32 n = k >> 5;
    k &= 0x1F;
    mask = (1<<k) - 1;

    w = b->wds - n;
    if (w <= 0)
        return 0;
    JS_ASSERT(w <= 2);
    bx = b->x;
    bxe = bx + n;
    result = *bxe >> k;
    *bxe &= mask;
    if (w == 2) {
        JS_ASSERT(!(bxe[1] & ~mask));
        if (k)
            result |= bxe[1] << (32 - k);
    }
    n++;
    while (!*bxe && bxe != bx) {
        n--;
        bxe--;
    }
    b->wds = n;
    return result;
}

/* Return floor(b/S) and set b to be the remainder.  As added restrictions, b must not have
 * more words than S, the most significant word of S must not start with a 1 bit, and the
 * returned quotient must be less than 36. */
static int32 quorem(Bigint *b, Bigint *S)
{
    int32 n;
    ULong *bx, *bxe, q, *sx, *sxe;
#ifdef ULLong
    ULLong borrow, carry, y, ys;
#else
    ULong borrow, carry, y, ys;
    ULong si, z, zs;
#endif

    n = S->wds;
    JS_ASSERT(b->wds <= n);
    if (b->wds < n)
        return 0;
    sx = S->x;
    sxe = sx + --n;
    bx = b->x;
    bxe = bx + n;
    JS_ASSERT(*sxe <= 0x7FFFFFFF);
    q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
    JS_ASSERT(q < 36);
    if (q) {
        borrow = 0;
        carry = 0;
        do {
#ifdef ULLong
            ys = *sx++ * (ULLong)q + carry;
            carry = ys >> 32;
            y = *bx - (ys & 0xffffffffUL) - borrow;
            borrow = y >> 32 & 1UL;
            *bx++ = (ULong)(y & 0xffffffffUL);
#else
            si = *sx++;
            ys = (si & 0xffff) * q + carry;
            zs = (si >> 16) * q + (ys >> 16);
            carry = zs >> 16;
            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
            borrow = (y & 0x10000) >> 16;
            z = (*bx >> 16) - (zs & 0xffff) - borrow;
            borrow = (z & 0x10000) >> 16;
            Storeinc(bx, z, y);
#endif
        }
        while(sx <= sxe);
        if (!*bxe) {
            bx = b->x;
            while(--bxe > bx && !*bxe)
                --n;
            b->wds = n;
        }
    }
    if (cmp(b, S) >= 0) {
        q++;
        borrow = 0;
        carry = 0;
        bx = b->x;
        sx = S->x;
        do {
#ifdef ULLong
            ys = *sx++ + carry;
            carry = ys >> 32;
            y = *bx - (ys & 0xffffffffUL) - borrow;
            borrow = y >> 32 & 1UL;
            *bx++ = (ULong)(y & 0xffffffffUL);
#else
            si = *sx++;
            ys = (si & 0xffff) + carry;
            zs = (si >> 16) + (ys >> 16);
            carry = zs >> 16;
            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
            borrow = (y & 0x10000) >> 16;
            z = (*bx >> 16) - (zs & 0xffff) - borrow;
            borrow = (z & 0x10000) >> 16;
            Storeinc(bx, z, y);
#endif
        } while(sx <= sxe);
        bx = b->x;
        bxe = bx + n;
        if (!*bxe) {
            while(--bxe > bx && !*bxe)
                --n;
            b->wds = n;
        }
    }
    return (int32)q;
}

/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 *
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
 *
 * Modifications:
 *  1. Rather than iterating, we use a simple numeric overestimate
 *     to determine k = floor(log10(d)).  We scale relevant
 *     quantities using O(log2(k)) rather than O(k) multiplications.
 *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 *     try to generate digits strictly left to right.  Instead, we
 *     compute with fewer bits and propagate the carry if necessary
 *     when rounding the final digit up.  This is often faster.
 *  3. Under the assumption that input will be rounded nearest,
 *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 *     That is, we allow equality in stopping tests when the
 *     round-nearest rule will give the same floating-point value
 *     as would satisfaction of the stopping test with strict
 *     inequality.
 *  4. We remove common factors of powers of 2 from relevant
 *     quantities.
 *  5. When converting floating-point integers less than 1e16,
 *     we use floating-point arithmetic rather than resorting
 *     to multiple-precision integers.
 *  6. When asked to produce fewer than 15 digits, we first try
 *     to get by with floating-point arithmetic; we resort to
 *     multiple-precision integer arithmetic only if we cannot
 *     guarantee that the floating-point calculation has given
 *     the correctly rounded result.  For k requested digits and
 *     "uniformly" distributed input, the probability is
 *     something like 10^(k-15) that we must resort to the Long
 *     calculation.
 */

/* Always emits at least one digit. */
/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
 * when the number is exactly halfway between two representable values.  For example,
 * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
 * 2.49 will still round to 2, and 2.51 will still round to 3. */
/* bufsize should be at least 20 for modes 0 and 1.  For the other modes,
 * bufsize should be two greater than the maximum number of output characters expected. */
static JSBool
js_dtoa(double d, int mode, JSBool biasUp, int ndigits,
    int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
{
    /*  Arguments ndigits, decpt, sign are similar to those
        of ecvt and fcvt; trailing zeros are suppressed from
        the returned string.  If not null, *rve is set to point
        to the end of the return value.  If d is +-Infinity or NaN,
        then *decpt is set to 9999.

        mode:
        0 ==> shortest string that yields d when read in
        and rounded to nearest.
        1 ==> like 0, but with Steele & White stopping rule;
        e.g. with IEEE P754 arithmetic , mode 0 gives
        1e23 whereas mode 1 gives 9.999999999999999e22.
        2 ==> max(1,ndigits) significant digits.  This gives a
        return value similar to that of ecvt, except
        that trailing zeros are suppressed.
        3 ==> through ndigits past the decimal point.  This
        gives a return value similar to that from fcvt,
        except that trailing zeros are suppressed, and
        ndigits can be negative.
        4-9 should give the same return values as 2-3, i.e.,
        4 <= mode <= 9 ==> same return as mode
        2 + (mode & 1).  These modes are mainly for
        debugging; often they run slower but sometimes
        faster than modes 2-3.
        4,5,8,9 ==> left-to-right digit generation.
        6-9 ==> don't try fast floating-point estimate
        (if applicable).

        Values of mode other than 0-9 are treated as mode 0.

        Sufficient space is allocated to the return value
        to hold the suppressed trailing zeros.
    */

    int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
        j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
        spec_case, try_quick;
    Long L;
#ifndef Sudden_Underflow
    int32 denorm;
    ULong x;
#endif
    Bigint *b, *b1, *delta, *mlo, *mhi, *S;
    double d2, ds, eps;
    char *s;

    if (word0(d) & Sign_bit) {
        /* set sign for everything, including 0's and NaNs */
        *sign = 1;
        set_word0(d, word0(d) & ~Sign_bit);  /* clear sign bit */
    }
    else
        *sign = 0;

    if ((word0(d) & Exp_mask) == Exp_mask) {
        /* Infinity or NaN */
        *decpt = 9999;
        s = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
        if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) {
            JS_ASSERT(JS_FALSE);
/*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
            return JS_FALSE;
        }
        strcpy(buf, s);
        if (rve) {
            *rve = buf[3] ? buf + 8 : buf + 3;
            JS_ASSERT(**rve == '\0');
        }
        return JS_TRUE;
    }

    b = NULL;                           /* initialize for abort protection */
    S = NULL;
    mlo = mhi = NULL;

    if (!d) {
      no_digits:
        *decpt = 1;
        if (bufsize < 2) {
            JS_ASSERT(JS_FALSE);
/*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
            return JS_FALSE;
        }
        buf[0] = '0'; buf[1] = '\0';  /* copy "0" to buffer */
        if (rve)
            *rve = buf + 1;
        /* We might have jumped to "no_digits" from below, so we need
         * to be sure to free the potentially allocated Bigints to avoid
         * memory leaks. */
        Bfree(b);
        Bfree(S);
        if (mlo != mhi)
            Bfree(mlo);
        Bfree(mhi);
        return JS_TRUE;
    }

    b = d2b(d, &be, &bbits);
    if (!b)
        goto nomem;
#ifdef Sudden_Underflow
    i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
    if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
#endif
        d2 = d;
        set_word0(d2, word0(d2) & Frac_mask1);
        set_word0(d2, word0(d2) | Exp_11);

        /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
         * log10(x)  =  log(x) / log(10)
         *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
         *
         * This suggests computing an approximation k to log10(d) by
         *
         * k = (i - Bias)*0.301029995663981
         *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
         *
         * We want k to be too large rather than too small.
         * The error in the first-order Taylor series approximation
         * is in our favor, so we just round up the constant enough
         * to compensate for any error in the multiplication of
         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
         * adding 1e-13 to the constant term more than suffices.
         * Hence we adjust the constant term to 0.1760912590558.
         * (We could get a more accurate k by invoking log10,
         *  but this is probably not worthwhile.)
         */

        i -= Bias;
#ifndef Sudden_Underflow
        denorm = 0;
    }
    else {
        /* d is denormalized */

        i = bbits + be + (Bias + (P-1) - 1);
        x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
        d2 = x;
        set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */
        i -= (Bias + (P-1) - 1) + 1;
        denorm = 1;
    }
#endif
    /* At this point d = f*2^i, where 1 <= f < 2.  d2 is an approximation of f. */
    ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
    k = (int32)ds;
    if (ds < 0. && ds != k)
        k--;    /* want k = floor(ds) */
    k_check = 1;
    if (k >= 0 && k <= Ten_pmax) {
        if (d < tens[k])
            k--;
        k_check = 0;
    }
    /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
       If k_check is zero, we're guaranteed that k = floor(log10(d)). */
    j = bbits - i - 1;
    /* At this point d = b/2^j, where b is an odd integer. */
    if (j >= 0) {
        b2 = 0;
        s2 = j;
    }
    else {
        b2 = -j;
        s2 = 0;
    }
    if (k >= 0) {
        b5 = 0;
        s5 = k;
        s2 += k;
    }
    else {
        b2 -= k;
        b5 = -k;
        s5 = 0;
    }
    /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
       b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
    if (mode < 0 || mode > 9)
        mode = 0;
    try_quick = 1;
    if (mode > 5) {
        mode -= 4;
        try_quick = 0;
    }
    leftright = 1;
    ilim = ilim1 = 0;
    switch(mode) {
    case 0:
    case 1:
        ilim = ilim1 = -1;
        i = 18;
        ndigits = 0;
        break;
    case 2:
        leftright = 0;
        /* no break */
    case 4:
        if (ndigits <= 0)
            ndigits = 1;
        ilim = ilim1 = i = ndigits;
        break;
    case 3:
        leftright = 0;
        /* no break */
    case 5:
        i = ndigits + k + 1;
        ilim = i;
        ilim1 = i - 1;
        if (i <= 0)
            i = 1;
    }
    /* ilim is the maximum number of significant digits we want, based on k and ndigits. */
    /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
       when it turns out that k was computed too high by one. */

    /* Ensure space for at least i+1 characters, including trailing null. */
    if (bufsize <= (size_t)i) {
        Bfree(b);
        JS_ASSERT(JS_FALSE);
        return JS_FALSE;
    }
    s = buf;

    if (ilim >= 0 && ilim <= Quick_max && try_quick) {

        /* Try to get by with floating-point arithmetic. */

        i = 0;
        d2 = d;
        k0 = k;
        ilim0 = ilim;
        ieps = 2; /* conservative */
        /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
        if (k > 0) {
            ds = tens[k&0xf];
            j = k >> 4;
            if (j & Bletch) {
                /* prevent overflows */
                j &= Bletch - 1;
                d /= bigtens[n_bigtens-1];
                ieps++;
            }
            for(; j; j >>= 1, i++)
                if (j & 1) {
                    ieps++;
                    ds *= bigtens[i];
                }
            d /= ds;
        }
        else if ((j1 = -k) != 0) {
            d *= tens[j1 & 0xf];
            for(j = j1 >> 4; j; j >>= 1, i++)
                if (j & 1) {
                    ieps++;
                    d *= bigtens[i];
                }
        }
        /* Check that k was computed correctly. */
        if (k_check && d < 1. && ilim > 0) {
            if (ilim1 <= 0)
                goto fast_failed;
            ilim = ilim1;
            k--;
            d *= 10.;
            ieps++;
        }
        /* eps bounds the cumulative error. */
        eps = ieps*d + 7.;
        set_word0(eps, word0(eps) - (P-1)*Exp_msk1);
        if (ilim == 0) {
            S = mhi = 0;
            d -= 5.;
            if (d > eps)
                goto one_digit;
            if (d < -eps)
                goto no_digits;
            goto fast_failed;
        }
#ifndef No_leftright
        if (leftright) {
            /* Use Steele & White method of only
             * generating digits needed.
             */
            eps = 0.5/tens[ilim-1] - eps;
            for(i = 0;;) {
                L = (Long)d;
                d -= L;
                *s++ = '0' + (char)L;
                if (d < eps)
                    goto ret1;
                if (1. - d < eps)
                    goto bump_up;
                if (++i >= ilim)
                    break;
                eps *= 10.;
                d *= 10.;
            }
        }
        else {
#endif
            /* Generate ilim digits, then fix them up. */
            eps *= tens[ilim-1];
            for(i = 1;; i++, d *= 10.) {
                L = (Long)d;
                d -= L;
                *s++ = '0' + (char)L;
                if (i == ilim) {
                    if (d > 0.5 + eps)
                        goto bump_up;
                    else if (d < 0.5 - eps) {
                        while(*--s == '0') ;
                        s++;
                        goto ret1;
                    }
                    break;
                }
            }
#ifndef No_leftright
        }
#endif
    fast_failed:
        s = buf;
        d = d2;
        k = k0;
        ilim = ilim0;
    }

    /* Do we have a "small" integer? */

    if (be >= 0 && k <= Int_max) {
        /* Yes. */
        ds = tens[k];
        if (ndigits < 0 && ilim <= 0) {
            S = mhi = 0;
            if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
                goto no_digits;
            goto one_digit;
        }

        /* Use true number of digits to limit looping. */
        for(i = 1; i<=k+1; i++) {
            L = (Long) (d / ds);
            d -= L*ds;
#ifdef Check_FLT_ROUNDS
            /* If FLT_ROUNDS == 2, L will usually be high by 1 */
            if (d < 0) {
                L--;
                d += ds;
            }
#endif
            *s++ = '0' + (char)L;
            if (i == ilim) {
                d += d;
                if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
                bump_up:
                    while(*--s == '9')
                        if (s == buf) {
                            k++;
                            *s = '0';
                            break;
                        }
                    ++*s++;
                }
                break;
            }
            d *= 10.;
        }
        goto ret1;
    }

    m2 = b2;
    m5 = b5;
    if (leftright) {
        if (mode < 2) {
            i =
#ifndef Sudden_Underflow
                denorm ? be + (Bias + (P-1) - 1 + 1) :
#endif
            1 + P - bbits;
            /* i is 1 plus the number of trailing zero bits in d's significand. Thus,
               (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
        }
        else {
            j = ilim - 1;
            if (m5 >= j)
                m5 -= j;
            else {
                s5 += j -= m5;
                b5 += j;
                m5 = 0;
            }
            if ((i = ilim) < 0) {
                m2 -= i;
                i = 0;
            }
            /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
        }
        b2 += i;
        s2 += i;
        mhi = i2b(1);
        if (!mhi)
            goto nomem;
        /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
           input (when mode < 2) significant digit, divided by 10^k. */
    }
    /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5).  Reduce common factors in
       b2, m2, and s2 without changing the equalities. */
    if (m2 > 0 && s2 > 0) {
        i = m2 < s2 ? m2 : s2;
        b2 -= i;
        m2 -= i;
        s2 -= i;
    }

    /* Fold b5 into b and m5 into mhi. */
    if (b5 > 0) {
        if (leftright) {
            if (m5 > 0) {
                mhi = pow5mult(mhi, m5);
                if (!mhi)
                    goto nomem;
                b1 = mult(mhi, b);
                if (!b1)
                    goto nomem;
                Bfree(b);
                b = b1;
            }
            if ((j = b5 - m5) != 0) {
                b = pow5mult(b, j);
                if (!b)
                    goto nomem;
            }
        }
        else {
            b = pow5mult(b, b5);
            if (!b)
                goto nomem;
        }
    }
    /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
       (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */

    S = i2b(1);
    if (!S)
        goto nomem;
    if (s5 > 0) {
        S = pow5mult(S, s5);
        if (!S)
            goto nomem;
    }
    /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
       (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */

    /* Check for special case that d is a normalized power of 2. */
    spec_case = 0;
    if (mode < 2) {
        if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
            && word0(d) & (Exp_mask & Exp_mask << 1)
#endif
            ) {
            /* The special case.  Here we want to be within a quarter of the last input
               significant digit instead of one half of it when the decimal output string's value is less than d.  */
            b2 += Log2P;
            s2 += Log2P;
            spec_case = 1;
        }
    }

    /* Arrange for convenient computation of quotients:
     * shift left if necessary so divisor has 4 leading 0 bits.
     *
     * Perhaps we should just compute leading 28 bits of S once
     * and for all and pass them and a shift to quorem, so it
     * can do shifts and ors to compute the numerator for q.
     */
    if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
        i = 32 - i;
    /* i is the number of leading zero bits in the most significant word of S*2^s2. */
    if (i > 4) {
        i -= 4;
        b2 += i;
        m2 += i;
        s2 += i;
    }
    else if (i < 4) {
        i += 28;
        b2 += i;
        m2 += i;
        s2 += i;
    }
    /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
    if (b2 > 0) {
        b = lshift(b, b2);
        if (!b)
            goto nomem;
    }
    if (s2 > 0) {
        S = lshift(S, s2);
        if (!S)
            goto nomem;
    }
    /* Now we have d/10^k = b/S and
       (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
    if (k_check) {
        if (cmp(b,S) < 0) {
            k--;
            b = multadd(b, 10, 0);  /* we botched the k estimate */
            if (!b)
                goto nomem;
            if (leftright) {
                mhi = multadd(mhi, 10, 0);
                if (!mhi)
                    goto nomem;
            }
            ilim = ilim1;
        }
    }
    /* At this point 1 <= d/10^k = b/S < 10. */

    if (ilim <= 0 && mode > 2) {
        /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
           Output either zero or the minimum nonzero output depending on which is closer to d. */
        if (ilim < 0)
            goto no_digits;
        S = multadd(S,5,0);
        if (!S)
            goto nomem;
        i = cmp(b,S);
        if (i < 0 || (i == 0 && !biasUp)) {
        /* Always emit at least one digit.  If the number appears to be zero
           using the current mode, then emit one '0' digit and set decpt to 1. */
        /*no_digits:
            k = -1 - ndigits;
            goto ret; */
            goto no_digits;
        }
    one_digit:
        *s++ = '1';
        k++;
        goto ret;
    }
    if (leftright) {
        if (m2 > 0) {
            mhi = lshift(mhi, m2);
            if (!mhi)
                goto nomem;
        }

        /* Compute mlo -- check for special case
         * that d is a normalized power of 2.
         */

        mlo = mhi;
        if (spec_case) {
            mhi = Balloc(mhi->k);
            if (!mhi)
                goto nomem;
            Bcopy(mhi, mlo);
            mhi = lshift(mhi, Log2P);
            if (!mhi)
                goto nomem;
        }
        /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
        /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */

        for(i = 1;;i++) {
            dig = quorem(b,S) + '0';
            /* Do we yet have the shortest decimal string
             * that will round to d?
             */
            j = cmp(b, mlo);
            /* j is b/S compared with mlo/S. */
            delta = diff(S, mhi);
            if (!delta)
                goto nomem;
            j1 = delta->sign ? 1 : cmp(b, delta);
            Bfree(delta);
            /* j1 is b/S compared with 1 - mhi/S. */
#ifndef ROUND_BIASED
            if (j1 == 0 && !mode && !(word1(d) & 1)) {
                if (dig == '9')
                    goto round_9_up;
                if (j > 0)
                    dig++;
                *s++ = (char)dig;
                goto ret;
            }
#endif
            if ((j < 0) || (j == 0 && !mode
#ifndef ROUND_BIASED
                && !(word1(d) & 1)
#endif
                )) {
                if (j1 > 0) {
                    /* Either dig or dig+1 would work here as the least significant decimal digit.
                       Use whichever would produce a decimal value closer to d. */
                    b = lshift(b, 1);
                    if (!b)
                        goto nomem;
                    j1 = cmp(b, S);
                    if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
                        && (dig++ == '9'))
                        goto round_9_up;
                }
                *s++ = (char)dig;
                goto ret;
            }
            if (j1 > 0) {
                if (dig == '9') { /* possible if i == 1 */
                round_9_up:
                    *s++ = '9';
                    goto roundoff;
                }
                *s++ = (char)dig + 1;
                goto ret;
            }
            *s++ = (char)dig;
            if (i == ilim)
                break;
            b = multadd(b, 10, 0);
            if (!b)
                goto nomem;
            if (mlo == mhi) {
                mlo = mhi = multadd(mhi, 10, 0);
                if (!mhi)
                    goto nomem;
            }
            else {
                mlo = multadd(mlo, 10, 0);
                if (!mlo)
                    goto nomem;
                mhi = multadd(mhi, 10, 0);
                if (!mhi)
                    goto nomem;
            }
        }
    }
    else
        for(i = 1;; i++) {
            *s++ = (char)(dig = quorem(b,S) + '0');
            if (i >= ilim)
                break;
            b = multadd(b, 10, 0);
            if (!b)
                goto nomem;
        }

    /* Round off last digit */

    b = lshift(b, 1);
    if (!b)
        goto nomem;
    j = cmp(b, S);
    if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
    roundoff:
        while(*--s == '9')
            if (s == buf) {
                k++;
                *s++ = '1';
                goto ret;
            }
        ++*s++;
    }
    else {
        /* Strip trailing zeros */
        while(*--s == '0') ;
        s++;
    }
  ret:
    Bfree(S);
    if (mhi) {
        if (mlo && mlo != mhi)
            Bfree(mlo);
        Bfree(mhi);
    }
  ret1:
    Bfree(b);
    JS_ASSERT(s < buf + bufsize);
    *s = '\0';
    if (rve)
        *rve = s;
    *decpt = k + 1;
    return JS_TRUE;

nomem:
    Bfree(S);
    if (mhi) {
        if (mlo && mlo != mhi)
            Bfree(mlo);
        Bfree(mhi);
    }
    Bfree(b);
    return JS_FALSE;
}


/* Mapping of JSDToStrMode -> js_dtoa mode */
static const int dtoaModes[] = {
    0,   /* DTOSTR_STANDARD */
    0,   /* DTOSTR_STANDARD_EXPONENTIAL, */
    3,   /* DTOSTR_FIXED, */
    2,   /* DTOSTR_EXPONENTIAL, */
    2};  /* DTOSTR_PRECISION */

JS_FRIEND_API(char *)
JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
{
    int decPt;                  /* Position of decimal point relative to first digit returned by js_dtoa */
    int sign;                   /* Nonzero if the sign bit was set in d */
    int nDigits;                /* Number of significand digits returned by js_dtoa */
    char *numBegin = buffer+2;  /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */
                                /* the sign and/or decimal point */
    char *numEnd;               /* Pointer past the digits returned by js_dtoa */
    JSBool dtoaRet;

    JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
            DTOSTR_VARIABLE_BUFFER_SIZE(precision)));

    if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
        mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */

    /* Locking for Balloc's shared buffers */
    ACQUIRE_DTOA_LOCK();
    dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2);
    RELEASE_DTOA_LOCK();
    if (!dtoaRet)
        return 0;

    nDigits = numEnd - numBegin;

    /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
    if (decPt != 9999) {
        JSBool exponentialNotation = JS_FALSE;
        int minNDigits = 0;         /* Minimum number of significand digits required by mode and precision */
        char *p;
        char *q;

        switch (mode) {
            case DTOSTR_STANDARD:
                if (decPt < -5 || decPt > 21)
                    exponentialNotation = JS_TRUE;
                else
                    minNDigits = decPt;
                break;

            case DTOSTR_FIXED:
                if (precision >= 0)
                    minNDigits = decPt + precision;
                else
                    minNDigits = decPt;
                break;

            case DTOSTR_EXPONENTIAL:
                JS_ASSERT(precision > 0);
                minNDigits = precision;
                /* Fall through */
            case DTOSTR_STANDARD_EXPONENTIAL:
                exponentialNotation = JS_TRUE;
                break;

            case DTOSTR_PRECISION:
                JS_ASSERT(precision > 0);
                minNDigits = precision;
                if (decPt < -5 || decPt > precision)
                    exponentialNotation = JS_TRUE;
                break;
        }

        /* If the number has fewer than minNDigits, pad it with zeros at the end */
        if (nDigits < minNDigits) {
            p = numBegin + minNDigits;
            nDigits = minNDigits;
            do {
                *numEnd++ = '0';
            } while (numEnd != p);
            *numEnd = '\0';
        }

        if (exponentialNotation) {
            /* Insert a decimal point if more than one significand digit */
            if (nDigits != 1) {
                numBegin--;
                numBegin[0] = numBegin[1];
                numBegin[1] = '.';
            }
            JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1);
        } else if (decPt != nDigits) {
            /* Some kind of a fraction in fixed notation */
            JS_ASSERT(decPt <= nDigits);
            if (decPt > 0) {
                /* dd...dd . dd...dd */
                p = --numBegin;
                do {
                    *p = p[1];
                    p++;
                } while (--decPt);
                *p = '.';
            } else {
                /* 0 . 00...00dd...dd */
                p = numEnd;
                numEnd += 1 - decPt;
                q = numEnd;
                JS_ASSERT(numEnd < buffer + bufferSize);
                *numEnd = '\0';
                while (p != numBegin)
                    *--q = *--p;
                for (p = numBegin + 1; p != q; p++)
                    *p = '0';
                *numBegin = '.';
                *--numBegin = '0';
            }
        }
    }

    /* If negative and neither -0.0 nor NaN, output a leading '-'. */
    if (sign &&
            !(word0(d) == Sign_bit && word1(d) == 0) &&
            !((word0(d) & Exp_mask) == Exp_mask &&
              (word1(d) || (word0(d) & Frac_mask)))) {
        *--numBegin = '-';
    }
    return numBegin;
}


/* Let b = floor(b / divisor), and return the remainder.  b must be nonnegative.
 * divisor must be between 1 and 65536.
 * This function cannot run out of memory. */
static uint32
divrem(Bigint *b, uint32 divisor)
{
    int32 n = b->wds;
    uint32 remainder = 0;
    ULong *bx;
    ULong *bp;

    JS_ASSERT(divisor > 0 && divisor <= 65536);

    if (!n)
        return 0; /* b is zero */
    bx = b->x;
    bp = bx + n;
    do {
        ULong a = *--bp;
        ULong dividend = remainder << 16 | a >> 16;
        ULong quotientHi = dividend / divisor;
        ULong quotientLo;

        remainder = dividend - quotientHi*divisor;
        JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor);
        dividend = remainder << 16 | (a & 0xFFFF);
        quotientLo = dividend / divisor;
        remainder = dividend - quotientLo*divisor;
        JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor);
        *bp = quotientHi << 16 | quotientLo;
    } while (bp != bx);
    /* Decrease the size of the number if its most significant word is now zero. */
    if (bx[n-1] == 0)
        b->wds--;
    return remainder;
}


/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
 * which occurs when printing -5e-324 in binary.  We could compute a better estimate of the size of
 * the output string and malloc fewer bytes depending on d and base, but why bother? */
#define DTOBASESTR_BUFFER_SIZE 1078
#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))

JS_FRIEND_API(char *)
JS_dtobasestr(int base, double d)
{
    char *buffer;        /* The output string */
    char *p;             /* Pointer to current position in the buffer */
    char *pInt;          /* Pointer to the beginning of the integer part of the string */
    char *q;
    uint32 digit;
    double di;           /* d truncated to an integer */
    double df;           /* The fractional part of d */

    JS_ASSERT(base >= 2 && base <= 36);

    buffer = (char*) malloc(DTOBASESTR_BUFFER_SIZE);
    if (buffer) {
        p = buffer;
        if (d < 0.0
#if defined(XP_WIN) || defined(XP_OS2)
            && !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */
#endif
           ) {
            *p++ = '-';
            d = -d;
        }

        /* Check for Infinity and NaN */
        if ((word0(d) & Exp_mask) == Exp_mask) {
            strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
            return buffer;
        }

        /* Locking for Balloc's shared buffers */
        ACQUIRE_DTOA_LOCK();

        /* Output the integer part of d with the digits in reverse order. */
        pInt = p;
        di = fd_floor(d);
        if (di <= 4294967295.0) {
            uint32 n = (uint32)di;
            if (n)
                do {
                    uint32 m = n / base;
                    digit = n - m*base;
                    n = m;
                    JS_ASSERT(digit < (uint32)base);
                    *p++ = BASEDIGIT(digit);
                } while (n);
            else *p++ = '0';
        } else {
            int32 e;
            int32 bits;  /* Number of significant bits in di; not used. */
            Bigint *b = d2b(di, &e, &bits);
            if (!b)
                goto nomem1;
            b = lshift(b, e);
            if (!b) {
              nomem1:
                Bfree(b);
                RELEASE_DTOA_LOCK();
                free(buffer);
                return NULL;
            }
            do {
                digit = divrem(b, base);
                JS_ASSERT(digit < (uint32)base);
                *p++ = BASEDIGIT(digit);
            } while (b->wds);
            Bfree(b);
        }
        /* Reverse the digits of the integer part of d. */
        q = p-1;
        while (q > pInt) {
            char ch = *pInt;
            *pInt++ = *q;
            *q-- = ch;
        }

        df = d - di;
        if (df != 0.0) {
            /* We have a fraction. */
            int32 e, bbits, s2, done;
            Bigint *b, *s, *mlo, *mhi;

            b = s = mlo = mhi = NULL;

            *p++ = '.';
            b = d2b(df, &e, &bbits);
            if (!b) {
              nomem2:
                Bfree(b);
                Bfree(s);
                if (mlo != mhi)
                    Bfree(mlo);
                Bfree(mhi);
                RELEASE_DTOA_LOCK();
                free(buffer);
                return NULL;
            }
            JS_ASSERT(e < 0);
            /* At this point df = b * 2^e.  e must be less than zero because 0 < df < 1. */

            s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
#ifndef Sudden_Underflow
            if (!s2)
                s2 = -1;
#endif
            s2 += Bias + P;
            /* 1/2^s2 = (nextDouble(d) - d)/2 */
            JS_ASSERT(-s2 < e);
            mlo = i2b(1);
            if (!mlo)
                goto nomem2;
            mhi = mlo;
            if (!word1(d) && !(word0(d) & Bndry_mask)
#ifndef Sudden_Underflow
                && word0(d) & (Exp_mask & Exp_mask << 1)
#endif
                ) {
                /* The special case.  Here we want to be within a quarter of the last input
                   significant digit instead of one half of it when the output string's value is less than d.  */
                s2 += Log2P;
                mhi = i2b(1<<Log2P);
                if (!mhi)
                    goto nomem2;
            }
            b = lshift(b, e + s2);
            if (!b)
                goto nomem2;
            s = i2b(1);
            if (!s)
                goto nomem2;
            s = lshift(s, s2);
            if (!s)
                goto nomem2;
            /* At this point we have the following:
             *   s = 2^s2;
             *   1 > df = b/2^s2 > 0;
             *   (d - prevDouble(d))/2 = mlo/2^s2;
             *   (nextDouble(d) - d)/2 = mhi/2^s2. */

            done = JS_FALSE;
            do {
                int32 j, j1;
                Bigint *delta;

                b = multadd(b, base, 0);
                if (!b)
                    goto nomem2;
                digit = quorem2(b, s2);
                if (mlo == mhi) {
                    mlo = mhi = multadd(mlo, base, 0);
                    if (!mhi)
                        goto nomem2;
                }
                else {
                    mlo = multadd(mlo, base, 0);
                    if (!mlo)
                        goto nomem2;
                    mhi = multadd(mhi, base, 0);
                    if (!mhi)
                        goto nomem2;
                }

                /* Do we yet have the shortest string that will round to d? */
                j = cmp(b, mlo);
                /* j is b/2^s2 compared with mlo/2^s2. */
                delta = diff(s, mhi);
                if (!delta)
                    goto nomem2;
                j1 = delta->sign ? 1 : cmp(b, delta);
                Bfree(delta);
                /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */

#ifndef ROUND_BIASED
                if (j1 == 0 && !(word1(d) & 1)) {
                    if (j > 0)
                        digit++;
                    done = JS_TRUE;
                } else
#endif
                if (j < 0 || (j == 0
#ifndef ROUND_BIASED
                    && !(word1(d) & 1)
#endif
                    )) {
                    if (j1 > 0) {
                        /* Either dig or dig+1 would work here as the least significant digit.
                           Use whichever would produce an output value closer to d. */
                        b = lshift(b, 1);
                        if (!b)
                            goto nomem2;
                        j1 = cmp(b, s);
                        if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output
                                     * such as 3.5 in base 3.  */
                            digit++;
                    }
                    done = JS_TRUE;
                } else if (j1 > 0) {
                    digit++;
                    done = JS_TRUE;
                }
                JS_ASSERT(digit < (uint32)base);
                *p++ = BASEDIGIT(digit);
            } while (!done);
            Bfree(b);
            Bfree(s);
            if (mlo != mhi)
                Bfree(mlo);
            Bfree(mhi);
        }
        JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
        *p = '\0';
        RELEASE_DTOA_LOCK();
    }
    return buffer;
}