summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorthevenyp <thevenyp@211d60ee-9f03-0410-a15a-8952a2c7a4e4>2009-07-29 16:38:18 +0000
committerthevenyp <thevenyp@211d60ee-9f03-0410-a15a-8952a2c7a4e4>2009-07-29 16:38:18 +0000
commit310ebdd32c1d7679c3aa560c61b4a6dafd67aae0 (patch)
tree0d81c6d9c985a693b9c3978b2a2f98cedae4dcb6
parentea5947a6d81a07fa8c786335c406492355680e5a (diff)
downloadmpc-310ebdd32c1d7679c3aa560c61b4a6dafd67aae0.tar.gz
doc/algorithms.tex: fix errors and typos.
git-svn-id: svn://scm.gforge.inria.fr/svn/mpc/trunk@628 211d60ee-9f03-0410-a15a-8952a2c7a4e4
-rw-r--r--doc/algorithms.tex156
1 files changed, 90 insertions, 66 deletions
diff --git a/doc/algorithms.tex b/doc/algorithms.tex
index 83dd3ea..bee5b3f 100644
--- a/doc/algorithms.tex
+++ b/doc/algorithms.tex
@@ -1386,11 +1386,11 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
dB_0(x_1, +0, +0, +0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) &> 0 \;\text{if}\; x_1 \leq -1 \\
dB_0(x_1, +0, +0, -0)\cdot(\delta_1, \delta_2, \epsilon_1,
- \epsilon_2) &> 0 \;\text{if}\; 1 \leq x_1 < 0 \\
+ \epsilon_2) &> 0 \;\text{if}\; -1 \leq x_1 < 0 \\
dB_0(x_1, +0, -0, -0)\cdot(\delta_1, \delta_2, \epsilon_1,
\epsilon_2) &< 0 \;\text{if}\; x_1 \leq -1\\
dB_0(x_1, +0, -0, +0)\cdot(\delta_1, \delta_2, \epsilon_1,
- \epsilon_2) &< 0 \;\text{if}\; 1 \leq x_1 < 0
+ \epsilon_2) &< 0 \;\text{if}\; -1 \leq x_1 < 0
\end {align*}
and the sign of $dB_k(x_1, +0, \rho_1 0, \rho_2 0)\cdot(\delta_1,
\delta_2, \epsilon_1, \epsilon_2)$ is not constant in all other
@@ -1416,15 +1416,14 @@ of $x_1$ (resp. $x_2$, $y_1$, $y_2$).
Let $\phi > 0$, then $x_2$ is not null or $x_1 < 0$.
Using the expression of the derivative given above, we have
\begin{align*}
- dB_0(x_1, x_2, +0, +0)\cdot(\delta_1, \delta_2, \epsilon_1,
- \epsilon_2) &> 0 \;\text{if}\; |x| \geq 1 \;\text{and}\; x \neq +1+0i\\
- dB_0(x_1, x_2, -0, -0)\cdot(\delta_1, \delta_2, \epsilon_1,
- \epsilon_2) &< 0 \;\text{if}\; |x| \geq 1 \;\text{and}\; x \neq +1+0i\\
- dB_0(x_1, x_2, +0, -0)\cdot(\delta_1, \delta_2, \epsilon_1,
- \epsilon_2) &> 0 \;\text{if}\; 1 \geq |x| > 0 \;\text{and}\; x \neq +1+0i\\
- dB_0(x_1, x_2, -0, +0)\cdot(\delta_1, \delta_2, \epsilon_1,
- \epsilon_2) &< 0 \;\text{if}\; 1 \geq |x| > 0 \;\text{and}\; x
- \neq +1+0i
+ dB_0(x_1, x_2, +0, +0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
+ &> 0 \;\text{if}\; |x| \geq 1 \;\text{and}\; \pi \geq \phi > 0\\
+ dB_0(x_1, x_2, -0, -0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
+ &< 0 \;\text{if}\; |x| \geq 1 \;\text{and}\; \pi \geq \phi > 0\\
+ dB_0(x_1, x_2, +0, -0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
+ &> 0 \;\text{if}\; 1 \geq |x| > 0 \;\text{and}\; \pi \geq \phi > 0\\
+ dB_0(x_1, x_2, -0, +0)\cdot(\delta_1, \delta_2, \epsilon_1, \epsilon_2)
+ &< 0 \;\text{if}\; 1 \geq |x| > 0 \;\text{and}\; \pi \geq \phi > 0
\end{align*}
\item If $y_2 \neq 0$, from \ref {eqn:Bk}, we have
\[
@@ -1505,73 +1504,98 @@ To sum up using the inequalities above and deriving those with negative $x_2$
from them and from the relation $\overline{x}^y =
\overline{x^{\overline{y}}}$, we can give the almost complete list of complex
powers of numbers (for dyadic complex) that have a determined signed zero
-part, the only exception being $x=+1 \pm 0i$ raised to a pure real power which
-cannot be treated as we have done here.
-
-\begin{tabular}{rlcrlrl}
- $x^{+0 +0i}$ & $=1 +0i$ &and&
- $x^{-0 -0i}$ & $= 1 -0i$ &
- if $|x| \geq 1$ &and $x \neq +1 \pm 0i$ \\
- $(x_1 +0i)^{y_1 +0i}$ & $= x_1^{y_1} +0i$ &and&
- $(x_1 -0i)^{y_1 -0i}$ & $= x_1^{y_1} -0i$ &
- if $x_1 > 1$ &and $y_1 > 0$\\
- $(x_1 \pm 0i)^{\pm0 +0i}$ & $= 1 +0i$ &and&
- $(x_1 \pm 0i)^{\pm0 -0i}$ & $= 1 -0i$ &
- if $x_1 > 1$\\
- $(x_1 \pm 0i)^{-0 +0i}$ & $= 1 +0i$ &and&
- $(x_1 \pm 0i)^{+0 -0i}$ & $= 1 -0i$ &
- if $|x_1| > 1$\\
- $(x_1 -0i)^{y_1 +0i}$ & $= x_1^{y_1} +0i$ &and&
- $(x_1 +0i)^{y_1 -0i}$ & $= x_1^{y_1} -0i$ &
- if $x_1 > 1$ &and $y_1 < 0$ \\
- $(+1 +\sigma_20i)^{y_1 \pm0}$ &
- \multicolumn{4}{l}{$=1 +\sigma_2\rho_1 0i$} &
- if $x_1=+1$ &and $y_1 \neq 0$ \\
- $x^{+0 -0i}$ & $= 1 +0i$ &and&
- $x^{-0 +0i}$ & $= 1 -0i$ &
- if $1 \geq |x| > 0$ &and $x \neq +1 \pm 0i$ \\
- $(x_1 +0i)^{y_1 -0i}$ & $= x_1^{y_1} +0i$ &and&
- $(x_1 -0i)^{y_1 +0i}$ & $= x_1^{y_1} -0i$ &
- if $1 > x_1 > 0$ &and $y_1 > 0$ \\
- $(x_1 +0i)^{+0 -0i}$ & $= 1 +0i$ &and&
- $(x_1 -0i)^{+0 +0i}$ & $= 1 -0i$ &
+part, the only exception being $x=+1 \pm 0i$ raised to zero power which cannot
+be treated as we have done here.
+
+\begin{tabular}{r@{ $=$ }lr@{ $=$ }ll}
+ $x^{+0 +0i}$ & $1 +0i$,&
+ $x^{-0 -0i}$ & $1 -0i$ &
+ if $|x|>1$ and $x_2>0$\\
+ $x^{-0 +0i}$ & $1 +0i$,&
+ $x^{+0 -0i}$ & $1 -0i$ &
+ if $|x|>1$ and $x_2<0$\\
+
+ $(x_1 \pm 0i)^{\pm0 +0i}$ & $1 +0i$,&
+ $(x_1 \pm 0i)^{\pm0 -0i}$ & $1 -0i$ &
+ if $x_1>1$\\
+
+ $(x_1 +0i)^{+0 +0i}$ & $1 +0i$, &
+ $(x_1 +0i)^{-0 -0i}$ & $1 -0i$ &
+ if $|x_1|>1$\\
+ $(x_1 -0i)^{-0 +0i}$ & $1 +0i$, &
+ $(x_1 -0i)^{+0 -0i}$ & $1 -0i$ &
+ if $|x_1|>1$\\
+
+ $(x_1 +0i)^{y_1 +0i}$ & $x_1^{y_1} +0i$, &
+ $(x_1 -0i)^{y_1 -0i}$ & $x_1^{y_1} -0i$ &
+ if $x_1>1$ and $y_1>0$\\
+ $(x_1 -0i)^{y_1 +0i}$ & $x_1^{y_1} +0i$, &
+ $(x_1 +0i)^{y_1 -0i}$ & $x_1^{y_1} -0i$ &
+ if $x_1>1$ and $y_1<0$\\
+
+ $(+1 +0i)^{y_1 \pm0i}$ & $1 +0i$, &
+ $(+1 -0i)^{y_1 \pm0i}$ & $1 -0i$ &
+ if $y_1>0$\\
+ $(+1 -0i)^{y_1 \pm0i}$ & $1 +0i$, &
+ $(+1 +0i)^{y_1 \pm0i}$ & $1 -0i$ &
+ if $y_1<0$\\
+
+ $x^{+0 -0i}$ & $1 +0i$, &
+ $x^{-0 +0i}$ & $1 -0i$ &
+ if $1>|x|>0$ and $x_2>0$\\
+ $x^{-0 -0i}$ & $1 +0i$, &
+ $x^{+0 +0i}$ & $1 -0i$ &
+ if $1>|x|>0$ and $x_2<0$\\
+
+ $(x_1 \pm0i)^{\pm0 -0i}$ & $1 +0i$, &
+ $(x_1 \pm0i)^{\pm0 +0i}$ & $1 -0i$ &
+ if $1 > x_1 > 0$ \\
+
+ $(x_1 +0i)^{+0 -0i}$ & $1 +0i$, &
+ $(x_1 -0i)^{+0 +0i}$ & $1 -0i$ &
if $1 > |x_1| > 0$ \\
- $(x_1 -0i)^{-0 -0i}$ & $= 1 +0i$ &and&
- $(x_1 +0i)^{-0 +0i}$ & $= 1 -0i$ &
+ $(x_1 -0i)^{-0 -0i}$ & $1 +0i$, &
+ $(x_1 +0i)^{-0 +0i}$ & $1 -0i$ &
if $1 > |x_1| > 0$ \\
- $(x_1 \pm0i)^{\pm0 -0i}$ & $= 1 +0i$ &and&
- $(x_1 \pm0i)^{\pm0 +0i}$ & $= 1 -0i$ &
- if $1 > x_1 > 0$ \\
- $(x_1 -0i)^{y_1 -0i}$ & $= x_1^{y_1} +0i$ &and&
- $(x_1 +0i)^{y_1 +0i}$ & $= x_1^{y_1} -0i$ &
- if $1 > x_1 > 0$ &and $y_1 < 0$ \\
- $(\pm 0 +x_2i)^{+0 +0i}$ & $= 1 +0i$ &and&
- $(\pm 0 +x_2i)^{-0 -0i}$ & $= 1 -0i$ &
+
+ $(x_1 +0i)^{y_1 -0i}$ & $x_1^{y_1} +0i$, &
+ $(x_1 -0i)^{y_1 +0i}$ & $x_1^{y_1} -0i$ &
+ if $1 > x_1 > 0$ and $y_1 > 0$ \\
+ $(x_1 -0i)^{y_1 -0i}$ & $x_1^{y_1} +0i$, &
+ $(x_1 +0i)^{y_1 +0i}$ & $x_1^{y_1} -0i$ &
+ if $1 > x_1 > 0$ and $y_1 < 0$ \\
+
+ $(\pm 0 +x_2i)^{+0 +0i}$ & $1 +0i$, &
+ $(\pm 0 +x_2i)^{-0 -0i}$ & $1 -0i$ &
if $x_2 \geq 1$ \\
- $(\pm 0 +x_2i)^{+0 -0i}$ & $= 1 +0i$ &and&
- $(\pm 0 +x_2i)^{-0 +0i}$ & $= 1 -0i$ &
+ $(\pm 0 +x_2i)^{+0 -0i}$ & $1 +0i$, &
+ $(\pm 0 +x_2i)^{-0 +0i}$ & $1 -0i$ &
if $1 \geq x_2 > 0$ \\
- $(\pm 0 +x_2i)^{-0 -0i}$ & $= 1 +0i$ &and&
- $(\pm 0 +x_2i)^{+0 +0i}$ & $= 1 -0i$ &
+ $(\pm 0 +x_2i)^{-0 -0i}$ & $1 +0i$, &
+ $(\pm 0 +x_2i)^{+0 +0i}$ & $1 -0i$ &
if $ 0 > x_2 \geq -1$ \\
- $(\pm 0 +x_2i)^{-0 +0i}$ & $= 1 +0i$ &and&
- $(\pm 0 +x_2i)^{+0 -0i}$ & $= 1 -0i$ &
+ $(\pm 0 +x_2i)^{-0 +0i}$ & $1 +0i$, &
+ $(\pm 0 +x_2i)^{+0 -0i}$ & $1 -0i$ &
if $-1 \geq x_2$ \\
- $(-1 +\sigma_2 0i)^{\rho_1 0 \pm0i}$ &
- \multicolumn{4}{l}{$= 1 + \sigma_2 \rho_1 0i$} &
- if $x_1=-1$ &and $y_1 = \rho_1 0$
+
+ $(-1 +0i)^{+0 \pm0i}$ & $1+0i$, &
+ $(-1 +0i)^{-0 \pm0i}$ & $1-0i$ \\
+ $(-1 -0i)^{-0 \pm0i}$ & $1+0i$, &
+ $(-1 -0i)^{+0 \pm0i}$ & $1-0i$ \\
\end{tabular}
-So when $x^y$ is a pure real number, a compatible pattern is:
+So when $x^y$ is a pure real number, the following pattern is compatible with
+the determined cases:
-\begin{tabular}{ll}
- $x^y = x_1^{y_1} + \rho_2 0$ & if $|x| > 1$\\
- $x^y = 1 + \sigma_2 \rho_1 0$ & if $|x| = 1$\\
- $x^y = x_1^{y_1} - \rho_2 0$ & if $|x| < 1$
+\begin{tabular}{rl}
+ $x^y = x_1^{y_1} + \rho_2 0i$ & if $|x| > 1$\\
+ $x^y = 1 + \sigma_2 \rho_1 0i$ & if $|x| = 1$\\
+ $x^y = x_1^{y_1} - \rho_2 0i$ & if $|x| < 1$\\
+ $x^y = x_1^{y_1} + \sigma_2 \rho_1 0i$ & if $y_1 \neq 0$
\end{tabular}
where $\sigma_2$ (resp $\rho_1$, $\rho_2$) is the sign of $x_2$ (resp. $y_1$,
-$y_2$).
+$y_2$) and with the convention $0^0=+1$.
\bibliographystyle{acm}
\bibliography{algorithms}