diff options
author | zimmerma <zimmerma@211d60ee-9f03-0410-a15a-8952a2c7a4e4> | 2011-09-07 17:31:05 +0000 |
---|---|---|
committer | zimmerma <zimmerma@211d60ee-9f03-0410-a15a-8952a2c7a4e4> | 2011-09-07 17:31:05 +0000 |
commit | e30b69480b4585d565926fe5ae82ae4437a41686 (patch) | |
tree | 13c59fbb5b2afd6035519b1517789bd831b5658e /src | |
parent | 5c27a7fd1535195fc08912fd2fa12c7797f90893 (diff) | |
download | mpc-e30b69480b4585d565926fe5ae82ae4437a41686.tar.gz |
[src/pow.c] implement coherent algorithm for the sign of 0 in the output
in case the input x had +0 or -0 in its real or imaginary part,
and y was real.
Note: this might now give different signs of 0 than previously.
[tests/pow_fr.dat] added corresponding test cases
git-svn-id: svn://scm.gforge.inria.fr/svn/mpc/trunk@1087 211d60ee-9f03-0410-a15a-8952a2c7a4e4
Diffstat (limited to 'src')
-rw-r--r-- | src/pow.c | 114 |
1 files changed, 102 insertions, 12 deletions
@@ -92,6 +92,68 @@ mpc_perfect_square_p (mpz_t a, mpz_t b, mpz_t c, mpz_t d) return 0; /* not a square */ } +/* fix the sign of Re(z) or Im(z) in case it is zero, + and Re(x) is zero. + sign_eps is 0 if Re(x) = +0, 1 if Re(x) = -0 + sign_a is the sign bit of Im(x). + Assume y is an integer (does nothing otherwise). +*/ +static void +fix_sign (mpc_t z, int sign_eps, int sign_a, mpfr_t y) +{ + int ymod4 = -1; + mpfr_exp_t ey; + mpz_t my; + unsigned long int t; + + mpz_init (my); + + ey = mpfr_get_z_exp (my, y); + /* normalize so that my is odd */ + t = mpz_scan1 (my, 0); + ey += (mpfr_exp_t) t; + mpz_tdiv_q_2exp (my, my, t); + /* y = my*2^ey */ + + /* compute y mod 4 (in case y is an integer) */ + if (ey >= 2) + ymod4 = 0; + else if (ey == 1) + ymod4 = mpz_tstbit (my, 0) * 2; /* correct if my < 0 */ + else if (ey == 0) + { + ymod4 = mpz_tstbit (my, 1) * 2 + mpz_tstbit (my, 0); + if (mpz_cmp_ui (my , 0) < 0) + ymod4 = 4 - ymod4; + } + else /* y is not an integer */ + goto end; + + if (mpfr_zero_p (MPC_RE(z))) + { + /* we assume y is always integer in that case (FIXME: prove it): + (eps+I*a)^y = +0 + I*a^y for y = 1 mod 4 and sign_eps = 0 + (eps+I*a)^y = -0 - I*a^y for y = 3 mod 4 and sign_eps = 0 */ + MPC_ASSERT (ymod4 == 1 || ymod4 == 3); + if ((ymod4 == 3 && sign_eps == 0) || + (ymod4 == 1 && sign_eps == 1)) + mpfr_neg (MPC_RE(z), MPC_RE(z), GMP_RNDZ); + } + else if (mpfr_zero_p (MPC_IM(z))) + { + /* we assume y is always integer in that case (FIXME: prove it): + (eps+I*a)^y = a^y - 0*I for y = 0 mod 4 and sign_a = sign_eps + (eps+I*a)^y = -a^y +0*I for y = 2 mod 4 and sign_a = sign_eps */ + MPC_ASSERT (ymod4 == 0 || ymod4 == 2); + if ((ymod4 == 0 && sign_a == sign_eps) || + (ymod4 == 2 && sign_a != sign_eps)) + mpfr_neg (MPC_IM(z), MPC_IM(z), GMP_RNDZ); + } + + end: + mpz_clear (my); +} + /* If x^y is exactly representable (with maybe a larger precision than z), round it in z and return the (mpc) inexact flag in [0, 10]. @@ -124,6 +186,7 @@ mpc_pow_exact (mpc_ptr z, mpc_srcptr x, mpfr_srcptr y, mpc_rnd_t rnd, t = mpz_scan1 (my, 0); ey += (mpfr_exp_t) t; mpz_tdiv_q_2exp (my, my, t); + /* y = my*2^ey */ if (mpfr_zero_p (MPC_RE(x))) { @@ -337,6 +400,9 @@ mpc_pow_exact (mpc_ptr z, mpc_srcptr x, mpfr_srcptr y, mpc_rnd_t rnd, mpz_clear (d); mpz_clear (u); + if (ret >= 0 && mpfr_zero_p (MPC_RE(x))) + fix_sign (z, mpfr_signbit (MPC_RE(x)), mpfr_signbit (MPC_IM(x)), y); + return ret; } @@ -395,7 +461,7 @@ is_odd (mpfr_srcptr y, mpfr_exp_t k) int mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd) { - int ret = -2, loop, x_real, y_real, z_real = 0, z_imag = 0; + int ret = -2, loop, x_real, x_imag, y_real, z_real = 0, z_imag = 0; mpc_t t, u; mpfr_prec_t p, pr, pi, maxprec; @@ -562,6 +628,7 @@ mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd) pr += MPC_RND_RE(rnd) == GMP_RNDN; pi += MPC_RND_IM(rnd) == GMP_RNDN; maxprec = MPC_MAX_PREC (z); + x_imag = mpfr_zero_p (MPC_RE(x)); for (loop = 0;; loop++) { int ret_exp; @@ -610,8 +677,8 @@ mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd) (see algorithms.tex) plus one due to the exponent difference: if z = a + I*b, where the relative error on z is at most 2^(-p), and EXP(a) = EXP(b) + k, the relative error on b is at most 2^(k-p) */ - if ((z_imag || mpfr_can_round (MPC_RE(u), p - q - 3 - dr, GMP_RNDN, GMP_RNDZ, pr)) && - (z_real || mpfr_can_round (MPC_IM(u), p - q - 3 - di, GMP_RNDN, GMP_RNDZ, pi))) + if ((z_imag || (p > q + 3 + dr && mpfr_can_round (MPC_RE(u), p - q - 3 - dr, GMP_RNDN, GMP_RNDZ, pr))) && + (z_real || (p > q + 3 + di && mpfr_can_round (MPC_IM(u), p - q - 3 - di, GMP_RNDN, GMP_RNDZ, pi)))) break; /* if Re(u) is not known to be zero, assume it is a normal number, i.e., @@ -649,11 +716,14 @@ mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd) */ mpfr_t n; int inex, cx1; - int sign_zi; + int sign_zi, sign_rex, sign_imx; /* cx1 < 0 if |x| < 1 cx1 = 0 if |x| = 1 cx1 > 0 if |x| > 1 */ + + sign_rex = mpfr_signbit (MPC_RE (x)); + sign_imx = mpfr_signbit (MPC_IM (x)); mpfr_init (n); inex = mpc_norm (n, x, GMP_RNDN); cx1 = mpfr_cmp_ui (n, 1); @@ -661,23 +731,43 @@ mpc_pow (mpc_ptr z, mpc_srcptr x, mpc_srcptr y, mpc_rnd_t rnd) cx1 = -inex; sign_zi = (cx1 < 0 && mpfr_signbit (MPC_IM (y)) == 0) - || (cx1 == 0 - && mpfr_signbit (MPC_IM (x)) != mpfr_signbit (MPC_RE (y))) + || (cx1 == 0 && sign_imx != mpfr_signbit (MPC_RE (y))) || (cx1 > 0 && mpfr_signbit (MPC_IM (y))); ret = mpfr_set (MPC_RE(z), MPC_RE(u), MPC_RND_RE(rnd)); - /* warning: mpfr_set_ui does not set Im(z) to -0 if Im(rnd) = RNDD */ - ret = MPC_INEX (ret, mpfr_set_ui (MPC_IM (z), 0, MPC_RND_IM (rnd))); - - if (MPC_RND_IM (rnd) == GMP_RNDD || sign_zi) - mpc_conj (z, z, MPC_RNDNN); + if (y_real && (x_real || x_imag)) + { + /* FIXME: with y_real we assume Im(y) is really 0, which is the case + for example when y comes from pow_fr, but in case Im(y) is +0 or + -0, we might get different results */ + mpfr_set_ui (MPC_IM (z), 0, MPC_RND_IM (rnd)); + fix_sign (z, sign_rex, sign_imx, MPC_RE (y)); + ret = MPC_INEX(ret, 0); /* imaginary part is exact */ + } + else + { + ret = MPC_INEX (ret, mpfr_set_ui (MPC_IM (z), 0, MPC_RND_IM (rnd))); + /* warning: mpfr_set_ui does not set Im(z) to -0 if Im(rnd) = RNDD */ + if (MPC_RND_IM (rnd) == GMP_RNDD || sign_zi) + mpc_conj (z, z, MPC_RNDNN); + } mpfr_clear (n); } else if (z_imag) { ret = mpfr_set (MPC_IM(z), MPC_IM(u), MPC_RND_IM(rnd)); - ret = MPC_INEX(mpfr_set_ui (MPC_RE(z), 0, MPC_RND_RE(rnd)), ret); + if (y_real && (x_real || x_imag)) + { + int sign_rex = mpfr_signbit (MPC_RE (x)); + int sign_imx = mpfr_signbit (MPC_IM (x)); + + mpfr_set_ui (MPC_RE (z), 0, MPC_RND_RE (rnd)); + fix_sign (z, sign_rex, sign_imx, MPC_RE (y)); + ret = MPC_INEX(0, ret); + } + else + ret = MPC_INEX(mpfr_set_ui (MPC_RE(z), 0, MPC_RND_RE(rnd)), ret); } else ret = mpc_set (z, u, rnd); |