diff options
-rw-r--r-- | doc/algorithms.tex | 68 |
1 files changed, 49 insertions, 19 deletions
diff --git a/doc/algorithms.tex b/doc/algorithms.tex index ac3179b..ac72589 100644 --- a/doc/algorithms.tex +++ b/doc/algorithms.tex @@ -551,32 +551,62 @@ The analogous bound for the second error term yields The values $\epsilon_{X, 1}^+$ may be estimated as explained at the end of \S\ref {sssec:propmul}. -Alternatively, one might write -$|\corr {x_1}^2 - \appro {x_1}^2| -= \appro {x_1}^2 \cdot -\left| 1 - \left( \frac {|\corr {x_1}|}{|\appro {x_1}|} \right)^2 \right|$ -and estimate the both-sided relative error as in \S\ref {sssec:proprealdiv} -to obtain, under the assumption that $\epsilon_{R, 1}^- < 2$, +We also need the relative lower error in the following. This can be obtained +by writing \[ -| \corr {x_1}^2 - \appro {x_1}^2 | +\appro {x_1}^2 - \corr {x_1}^2 += +\left( 1 - \left| \frac {\corr {x_1}}{\appro {x_1}} \right|^2 \right) +\cdot \appro {x_1}^2 +\leq +\big( 1 - (1 - \epsilon_{R, 1}^-)^2 \big) \appro {x_1}^2 += +\big( \epsilon_{R, 1}^- (2 - \epsilon_{R, 1}^-) \big) \appro {x_1}^2. +\] +Adding the corresponding expression for the second term +$\appro {x_1}^2 - \corr {x_1}^2$ yields +\begin {equation} +\label {eq:propnormepsminus} +\frac {\appro x - \corr x}{\appro x} +\leq +\max \big( + \epsilon_{R, 1}^- (2 - \epsilon_{R, 1}^-), + \epsilon_{I, 1}^- (2 - \epsilon_{I, 1}^-) +\big) +=: \epsilon^-, +\end {equation} +and under the assumption that $\epsilon^- \geq 0$, inspection of +Definition~\ref {def:relerror} shows that +$\epsilon^- \geq \relerror^- (\appro x)$ since +$\appro x$ and $\corr x$ are positive. + +The converse estimation yields +\begin {equation} +\label {eq:propnormepsplus} +\relerror^+ (\appro x) +\leq +\epsilon^+ +:= +\frac {\appro x - \corr x}{\appro x} \leq \max \big( \epsilon_{R, 1}^+ (2 + \epsilon_{R, 1}^+), - \epsilon_{R, 1}^- (2 - \epsilon_{R, 1}^-) + \epsilon_{I, 1}^+ (2 + \epsilon_{I, 1}^+) \big) -\appro {x_1}^2 -\] -Adding the corresponding bound on the second term, using -Proposition~\ref {prop:relerror} and letting -$k_1 = \max ( k_{R, 1}, k_{I, 1})$ and +\end {equation} +and $\relerror (\appro x) \leq \epsilon := \max (\epsilon^-, \epsilon^+)$. +Letting $\epsilon_1 = \max ( \epsilon_{R, 1}^-, \epsilon_{R, 1}^+, - \epsilon_{I, 1}^-, \epsilon_{I, 1}^+ )$ -leads to + \epsilon_{I, 1}^-, \epsilon_{I, 1}^+ ) + = \max ( \epsilon_{R, 1}, \epsilon_{I, 1} )$ +and $k_1 = \max ( k_{R, 1}, k_{I, 1})$, +we have +$\epsilon \leq \epsilon_1 (2 + \epsilon_1) \leq 2 k_1 (2 + \epsilon_1) 2^{-p}$ +by Proposition~\ref {prop:relerror}. +We obtain an alternative expression for the absolute error as \begin {equation} \label {eq:propnormalt} -\error (\appro x) -\leq -\epsilon_1 (2 + \epsilon_1) 2^{\Exp (\appro x)} +\error (\appro x) \leq \epsilon \appro x \leq 2 k_1 (2 + \epsilon_1) 2^{\Exp (\appro x) - p} \end {equation} @@ -594,7 +624,7 @@ Then the propagated error may be derived by cumulating the errors obtained for multiplication in \S\ref {sssec:propmul}, the norm in \S\ref {sssec:propnorm} and the division by a real in \S\ref {sssec:proprealdiv}. -We note +We write \begin{align*} \corr a &= \Re (\corr {z_1} \overline {\corr {z_2}}) & \corr b &= \Im (\corr {z_1} \overline {\corr {z_2}}) & |