/* mpc_sin_cos -- combined sine and cosine of a complex number. Copyright (C) 2010, 2011 INRIA This file is part of GNU MPC. GNU MPC is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/ . */ #include "mpc-impl.h" static int mpc_sin_cos_nonfinite (mpc_ptr rop_sin, mpc_ptr rop_cos, mpc_srcptr op, mpc_rnd_t rnd_sin, mpc_rnd_t rnd_cos) /* assumes that op (that is, its real or imaginary part) is not finite */ { int overlap; mpc_t op_loc; overlap = (rop_sin == op || rop_cos == op); if (overlap) { mpc_init3 (op_loc, MPC_PREC_RE (op), MPC_PREC_IM (op)); mpc_set (op_loc, op, MPC_RNDNN); } else op_loc [0] = op [0]; if (rop_sin != NULL) { if (mpfr_nan_p (MPC_RE (op_loc)) || mpfr_nan_p (MPC_IM (op_loc))) { mpc_set (rop_sin, op_loc, rnd_sin); if (mpfr_nan_p (MPC_IM (op_loc))) { /* sin(x +i*NaN) = NaN +i*NaN, except for x=0 */ /* sin(-0 +i*NaN) = -0 +i*NaN */ /* sin(+0 +i*NaN) = +0 +i*NaN */ if (!mpfr_zero_p (MPC_RE (op_loc))) mpfr_set_nan (MPC_RE (rop_sin)); } else /* op = NaN + i*y */ if (!mpfr_inf_p (MPC_IM (op_loc)) && !mpfr_zero_p (MPC_IM (op_loc))) /* sin(NaN -i*Inf) = NaN -i*Inf */ /* sin(NaN -i*0) = NaN -i*0 */ /* sin(NaN +i*0) = NaN +i*0 */ /* sin(NaN +i*Inf) = NaN +i*Inf */ /* sin(NaN +i*y) = NaN +i*NaN, when 0<|y| 0 */ inex_cos_re = mpfr_cosh (MPC_RE (rop_cos), MPC_IM (op_loc), MPC_RND_RE (rnd_cos)); mpfr_set_ui (MPC_IM (rop_cos), 0ul, MPC_RND_IM (rnd_cos)); if (mpfr_signbit (MPC_RE (op_loc)) == mpfr_signbit (MPC_IM (op_loc))) MPFR_CHANGE_SIGN (MPC_IM (rop_cos)); } if (overlap) mpc_clear (op_loc); return MPC_INEX12 (MPC_INEX (0, inex_sin_im), MPC_INEX (inex_cos_re, 0)); } int mpc_sin_cos (mpc_ptr rop_sin, mpc_ptr rop_cos, mpc_srcptr op, mpc_rnd_t rnd_sin, mpc_rnd_t rnd_cos) /* Feature not documented in the texinfo file: One of rop_sin or rop_cos may be NULL, in which case it is not computed, and the corresponding ternary inexact value is set to 0 (exact). */ { if (!mpc_fin_p (op)) return mpc_sin_cos_nonfinite (rop_sin, rop_cos, op, rnd_sin, rnd_cos); else if (mpfr_zero_p (MPC_IM (op))) return mpc_sin_cos_real (rop_sin, rop_cos, op, rnd_sin, rnd_cos); else if (mpfr_zero_p (MPC_RE (op))) return mpc_sin_cos_imag (rop_sin, rop_cos, op, rnd_sin, rnd_cos); else { /* let op = a + i*b, then sin(op) = sin(a)*cosh(b) + i*cos(a)*sinh(b) and cos(op) = cos(a)*cosh(b) - i*sin(a)*sinh(b). For Re(sin(op)) (and analogously, the other parts), we use the following algorithm, with rounding to nearest for all operations and working precision w: (1) x = o(sin(a)) (2) y = o(cosh(b)) (3) r = o(x*y) then the error on r is at most 4 ulps, since we can write r = sin(a)*cosh(b)*(1+t)^3 with |t| <= 2^(-w), thus for w >= 2, r = sin(a)*cosh(b)*(1+4*t) with |t| <= 2^(-w), thus the relative error is bounded by 4*2^(-w) <= 4*ulp(r). */ mpfr_t s, c, sh, ch, sch, csh; mpfr_prec_t prec; int ok; int inex_re, inex_im, inex_sin, inex_cos; prec = 2; if (rop_sin != NULL) prec = MPC_MAX (prec, MPC_MAX_PREC (rop_sin)); if (rop_cos != NULL) prec = MPC_MAX (prec, MPC_MAX_PREC (rop_cos)); mpfr_init2 (s, 2); mpfr_init2 (c, 2); mpfr_init2 (sh, 2); mpfr_init2 (ch, 2); mpfr_init2 (sch, 2); mpfr_init2 (csh, 2); do { ok = 1; prec += mpc_ceil_log2 (prec) + 5; mpfr_set_prec (s, prec); mpfr_set_prec (c, prec); mpfr_set_prec (sh, prec); mpfr_set_prec (ch, prec); mpfr_set_prec (sch, prec); mpfr_set_prec (csh, prec); mpfr_sin_cos (s, c, MPC_RE(op), GMP_RNDN); mpfr_sinh_cosh (sh, ch, MPC_IM(op), GMP_RNDN); if (rop_sin != NULL) { /* real part of sine */ mpfr_mul (sch, s, ch, GMP_RNDN); ok = (!mpfr_number_p (sch)) || mpfr_can_round (sch, prec - 2, GMP_RNDN, GMP_RNDZ, MPC_PREC_RE (rop_sin) + (MPC_RND_RE (rnd_sin) == GMP_RNDN)); if (ok) { /* imaginary part of sine */ mpfr_mul (csh, c, sh, GMP_RNDN); ok = (!mpfr_number_p (csh)) || mpfr_can_round (csh, prec - 2, GMP_RNDN, GMP_RNDZ, MPC_PREC_IM (rop_sin) + (MPC_RND_IM (rnd_sin) == GMP_RNDN)); } } if (rop_cos != NULL && ok) { /* real part of cosine */ mpfr_mul (c, c, ch, GMP_RNDN); ok = (!mpfr_number_p (c)) || mpfr_can_round (c, prec - 2, GMP_RNDN, GMP_RNDZ, MPC_PREC_RE (rop_cos) + (MPC_RND_RE (rnd_cos) == GMP_RNDN)); if (ok) { /* imaginary part of cosine */ mpfr_mul (s, s, sh, GMP_RNDN); mpfr_neg (s, s, GMP_RNDN); ok = (!mpfr_number_p (s)) || mpfr_can_round (s, prec - 2, GMP_RNDN, GMP_RNDZ, MPC_PREC_IM (rop_cos) + (MPC_RND_IM (rnd_cos) == GMP_RNDN)); } } } while (ok == 0); if (rop_sin != NULL) { inex_re = mpfr_set (MPC_RE (rop_sin), sch, MPC_RND_RE (rnd_sin)); if (mpfr_inf_p (sch)) inex_re = mpfr_sgn (sch); inex_im = mpfr_set (MPC_IM (rop_sin), csh, MPC_RND_IM (rnd_sin)); if (mpfr_inf_p (csh)) inex_im = mpfr_sgn (csh); inex_sin = MPC_INEX (inex_re, inex_im); } else inex_sin = MPC_INEX (0,0); /* return exact if not computed */ if (rop_cos != NULL) { inex_re = mpfr_set (MPC_RE (rop_cos), c, MPC_RND_RE (rnd_cos)); if (mpfr_inf_p (c)) inex_re = mpfr_sgn (c); inex_im = mpfr_set (MPC_IM (rop_cos), s, MPC_RND_IM (rnd_cos)); if (mpfr_inf_p (s)) inex_im = mpfr_sgn (s); inex_cos = MPC_INEX (inex_re, inex_im); } else inex_cos = MPC_INEX (0,0); /* return exact if not computed */ mpfr_clear (s); mpfr_clear (c); mpfr_clear (sh); mpfr_clear (ch); mpfr_clear (sch); mpfr_clear (csh); return (MPC_INEX12 (inex_sin, inex_cos)); } }