/* tgeneric.tpl -- template file for generic tests. Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013, 2014 INRIA This file is part of GNU MPC. GNU MPC is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/ . */ #ifndef MPC_FUNCTION_CALL #error Define MPC_FUNCTION_CALL before including 'data_check.tpl'. #endif /* helper functions, defined after tgeneric */ static int count_special_cases (mpc_fun_param_t *params); static void random_params (mpc_fun_param_t *params, mpfr_exp_t exp_min, mpfr_exp_t exp_max, int special); static void check_against_quadruple_precision (mpc_fun_param_t *params, mpfr_prec_t prec, mpfr_exp_t exp_min, mpfr_exp_t exp_max, int special); /* tgeneric(desc, prec_min, prec_max, step, exp_max) checks rounding with random numbers: - with precision ranging from prec_min to prec_max with an increment of step, - with exponent between -exp_max and exp_max. - for pure real, pure imaginary and infinite random parameters. It also checks parameter reuse. */ static void tgeneric_template (const char *description_file, mpfr_prec_t prec_min, mpfr_prec_t prec_max, mpfr_prec_t step, mpfr_exp_t exp_max) { int special = 0; int last_special; mpfr_prec_t prec; mpfr_exp_t exp_min; mpc_fun_param_t params; read_description (¶ms, description_file); init_parameters (¶ms); /* ask for enough memory */ set_output_precision (¶ms, 4 * prec_max); set_input_precision (¶ms, prec_max); set_reference_precision (¶ms, prec_max); /* sanity checks */ exp_min = mpfr_get_emin (); if (exp_max <= 0 || exp_max > mpfr_get_emax ()) exp_max = mpfr_get_emax(); if (-exp_max > exp_min) exp_min = - exp_max; if (step < 1) step = 1; /* check consistency with quadruple precision for random parameters */ for (prec = prec_min; prec <= prec_max; prec += step) check_against_quadruple_precision (¶ms, prec, exp_min, exp_max, -1); /* check consistency with quadruple precision for special values: pure real, pure imaginary, or infinite arguments */ last_special = count_special_cases (¶ms); for (special = 0; special < last_special ; special++) check_against_quadruple_precision (¶ms, prec_max, exp_min, exp_max, special); clear_parameters (¶ms); } static void check_against_quadruple_precision (mpc_fun_param_t *params, mpfr_prec_t prec, mpfr_exp_t exp_min, mpfr_exp_t exp_max, int special) { static int rand_counter = 0; mpc_operand_t *P = params->P; /* developer-friendly alias, used in macros */ set_input_precision (params, prec); set_reference_precision (params, prec); set_output_precision (params, 4 * prec); random_params (params, exp_min, exp_max, special); for (first_rnd_mode (params); is_valid_rnd_mode (params); next_rnd_mode (params)) { MPC_FUNCTION_CALL; while (double_rounding (params)) /* try another input parameters until no double rounding occurs when the extra-precise result is rounded to working precision */ { random_params (params, exp_min, exp_max, special); MPC_FUNCTION_CALL; } set_output_precision (params, prec); set_mpfr_flags (rand_counter); MPC_FUNCTION_CALL; check_mpfr_flags (rand_counter++); check_data (NULL, params, 0); #ifdef MPC_FUNCTION_CALL_SYMMETRIC MPC_FUNCTION_CALL_SYMMETRIC; check_data (NULL, params, 0); #endif #ifdef MPC_FUNCTION_CALL_REUSE_OP1 if (copy_parameter (params, 1, 2) == 0) { MPC_FUNCTION_CALL_REUSE_OP1; check_data (NULL, params, 2); } #endif #ifdef MPC_FUNCTION_CALL_REUSE_OP2 if (copy_parameter (params, 1, 3) == 0) { MPC_FUNCTION_CALL_REUSE_OP2; check_data (NULL, params, 3); } #endif #ifdef MPC_FUNCTION_CALL_REUSE_OP3 if (copy_parameter (params, 1, 4) == 0) { MPC_FUNCTION_CALL_REUSE_OP3; check_data (NULL, params, 4); } #endif set_output_precision (params, 4 * prec); } } /* special cases */ enum { SPECIAL_MINF, SPECIAL_MZERO, SPECIAL_PZERO, SPECIAL_PINF, SPECIAL_COUNT }; static int count_special_cases (mpc_fun_param_t *params) /* counts the number of possibilities of exactly one real or imaginary part of any input parameter being special, all others being finite real numbers */ { int i; const int start = params->nbout; const int end = start + params->nbin - 1; /* the last input parameter is the rounding mode */ int count = 0; for (i = start; i < end; i++) { if (params->T[i] == MPFR) count += SPECIAL_COUNT; else if (params->T[i] == MPC) /* special + i x random and random + i x special */ count += 2 * SPECIAL_COUNT; } return count; } static void special_mpfr (mpfr_ptr x, int special) { switch (special) { case SPECIAL_MINF: mpfr_set_inf (x, -1); break; case SPECIAL_MZERO: mpfr_set_zero (x, -1); break; case SPECIAL_PZERO: mpfr_set_zero (x, +1); break; case SPECIAL_PINF: mpfr_set_inf (x, +1); break; case SPECIAL_COUNT: /* does not occur */ break; } } static void special_random_mpc (mpc_ptr z, mpfr_exp_t exp_min, mpfr_exp_t exp_max, int special) { mpfr_ptr special_part; mpfr_ptr random_part; int mpfr_special; if (special < SPECIAL_COUNT) { mpfr_special = special; special_part = mpc_realref (z); random_part = mpc_imagref (z); } else { mpfr_special = special - SPECIAL_COUNT; special_part = mpc_imagref (z); random_part = mpc_realref (z); } special_mpfr (special_part, mpfr_special); test_random_mpfr (random_part, exp_min, exp_max, 128); } static void random_params (mpc_fun_param_t *params, mpfr_exp_t exp_min, mpfr_exp_t exp_max, int special) { int i; int base_index = 0; const int start = params->nbout; const int end = start + params->nbin; const unsigned int int_emax = 42; /* maximum binary exponent for random integer */ for (i = start; i < end; i++) { long int si; switch (params->T[i]) { case NATIVE_INT: test_random_si (&si, int_emax, 128); params->P[i].i = (int) si; break; case NATIVE_L: test_random_si (¶ms->P[i].si, int_emax, 128); break; case NATIVE_UL: test_random_si (&si, int_emax, 128); params->P[i].ui = (unsigned long)si; break; case NATIVE_D: test_random_d (¶ms->P[i].d, 128); break; case NATIVE_LD: case NATIVE_DC: case NATIVE_LDC: /* TODO: draw random value */ fprintf (stderr, "random_params: type not implemented.\n"); exit (1); break; case NATIVE_IM: case NATIVE_UIM: /* TODO: draw random value */ fprintf (stderr, "random_params: type not implemented.\n"); exit (1); break; case GMP_Z: /* TODO: draw random value */ fprintf (stderr, "random_params: type not implemented.\n"); exit (1); break; case GMP_Q: /* TODO: draw random value */ fprintf (stderr, "random_params: type not implemented.\n"); exit (1); break; case GMP_F: /* TODO: draw random value */ fprintf (stderr, "random_params: type not implemented.\n"); exit (1); break; case MPFR: if (base_index <= special && special - base_index < SPECIAL_COUNT) special_mpfr (params->P[i].mpfr, special - base_index); else test_random_mpfr (params->P[i].mpfr, exp_min, exp_max, 128); base_index += SPECIAL_COUNT; break; case MPC: if (base_index <= special && special - base_index < 2 * SPECIAL_COUNT) special_random_mpc (params->P[i].mpc, exp_min, exp_max, special - base_index); else test_random_mpc (params->P[i].mpc, exp_min, exp_max, 128); base_index += 2 * SPECIAL_COUNT; break; case NATIVE_STRING: case MPFR_INEX: case MPC_INEX: case MPCC_INEX: /* unsupported types */ fprintf (stderr, "random_params: unsupported type.\n"); exit (1); break; case MPFR_RND: case MPC_RND: /* just skip rounding mode(s) */ break; } } }