summaryrefslogtreecommitdiff
path: root/src/sqr.c
blob: 164cef4411951077ffc09de00b737d0ca8490141 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/* mpc_sqr -- Square a complex number.

Copyright (C) 2002, 2005, 2008, 2009, 2010, 2011 INRIA

This file is part of GNU MPC.

GNU MPC is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

GNU MPC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/

#include <stdio.h>    /* for MPC_ASSERT */
#include "mpc-impl.h"

int
mpc_sqr (mpc_ptr rop, mpc_srcptr op, mpc_rnd_t rnd)
{
   int ok;
   mpfr_t u, v;
   mpfr_t x;
      /* rop temporary variable to hold the real part of op,
         needed in the case rop==op */
   mpfr_prec_t prec;
   int inex_re, inex_im, inexact;
   mpfr_exp_t emin, emax;

   /* special values: NaN and infinities */
   if (!mpc_fin_p (op)) {
      if (mpfr_nan_p (mpc_realref (op)) || mpfr_nan_p (mpc_imagref (op))) {
         mpfr_set_nan (mpc_realref (rop));
         mpfr_set_nan (mpc_imagref (rop));
      }
      else if (mpfr_inf_p (mpc_realref (op))) {
         if (mpfr_inf_p (mpc_imagref (op))) {
            mpfr_set_inf (mpc_imagref (rop),
                          MPFR_SIGN (mpc_realref (op)) * MPFR_SIGN (mpc_imagref (op)));
            mpfr_set_nan (mpc_realref (rop));
         }
         else {
            if (mpfr_zero_p (mpc_imagref (op)))
               mpfr_set_nan (mpc_imagref (rop));
            else
               mpfr_set_inf (mpc_imagref (rop),
                             MPFR_SIGN (mpc_realref (op)) * MPFR_SIGN (mpc_imagref (op)));
            mpfr_set_inf (mpc_realref (rop), +1);
         }
      }
      else /* IM(op) is infinity, RE(op) is not */ {
         if (mpfr_zero_p (mpc_realref (op)))
            mpfr_set_nan (mpc_imagref (rop));
         else
            mpfr_set_inf (mpc_imagref (rop),
                          MPFR_SIGN (mpc_realref (op)) * MPFR_SIGN (mpc_imagref (op)));
         mpfr_set_inf (mpc_realref (rop), -1);
      }
      return MPC_INEX (0, 0); /* exact */
   }

   prec = MPC_MAX_PREC(rop);

   /* first check for real resp. purely imaginary number */
   if (mpfr_zero_p (mpc_imagref(op)))
   {
      int same_sign = mpfr_signbit (mpc_realref (op)) == mpfr_signbit (mpc_imagref (op));
      inex_re = mpfr_sqr (mpc_realref(rop), mpc_realref(op), MPC_RND_RE(rnd));
      inex_im = mpfr_set_ui (mpc_imagref(rop), 0ul, GMP_RNDN);
      if (!same_sign)
        mpc_conj (rop, rop, MPC_RNDNN);
      return MPC_INEX(inex_re, inex_im);
   }
   if (mpfr_zero_p (mpc_realref(op)))
   {
      int same_sign = mpfr_signbit (mpc_realref (op)) == mpfr_signbit (mpc_imagref (op));
      inex_re = -mpfr_sqr (mpc_realref(rop), mpc_imagref(op), INV_RND (MPC_RND_RE(rnd)));
      mpfr_neg (mpc_realref(rop), mpc_realref(rop), GMP_RNDN);
      inex_im = mpfr_set_ui (mpc_imagref(rop), 0ul, GMP_RNDN);
      if (!same_sign)
        mpc_conj (rop, rop, MPC_RNDNN);
      return MPC_INEX(inex_re, inex_im);
   }
   /* If the real and imaginary parts of the argument have very different  */
   /* exponents, it is not reasonable to use Karatsuba squaring; compute   */
   /* exactly with the standard formulae instead, even if this means an    */
   /* additional multiplication.                                           */
   if (SAFE_ABS (mpfr_exp_t,
                 mpfr_get_exp (mpc_realref (op)) - mpfr_get_exp (mpc_imagref (op)))
       > (mpfr_exp_t) MPC_MAX_PREC (op) / 2)
   {
      mpfr_init2 (u, 2*MPC_PREC_RE (op));
      mpfr_init2 (v, 2*MPC_PREC_IM (op));

      mpfr_sqr (u, mpc_realref (op), GMP_RNDN);
      mpfr_sqr (v, mpc_imagref (op), GMP_RNDN); /* both are exact */
      inex_im = mpfr_mul (rop->im, op->re, op->im, MPC_RND_IM (rnd));
      mpfr_mul_2exp (rop->im, rop->im, 1, GMP_RNDN);
      inex_re = mpfr_sub (rop->re, u, v, MPC_RND_RE (rnd));

      mpfr_clear (u);
      mpfr_clear (v);
      return MPC_INEX (inex_re, inex_im);
   }


   mpfr_init (u);
   mpfr_init (v);

   if (rop == op)
   {
      mpfr_init2 (x, MPC_PREC_RE (op));
      mpfr_set (x, op->re, GMP_RNDN);
   }
   else
      x [0] = op->re [0];

   emax = mpfr_get_emax ();
   emin = mpfr_get_emin ();

   do
   {
      prec += mpc_ceil_log2 (prec) + 5;

      mpfr_set_prec (u, prec);
      mpfr_set_prec (v, prec);

      /* Let op = x + iy. We need u = x+y and v = x-y, rounded away.      */
      /* The error is bounded above by 1 ulp.                             */
      /* We first let inexact be 1 if the real part is not computed       */
      /* exactly and determine the sign later.                            */
      inexact =    ROUND_AWAY (mpfr_add (u, x, mpc_imagref (op), MPFR_RNDA), u)
                 | ROUND_AWAY (mpfr_sub (v, x, mpc_imagref (op), MPFR_RNDA), v);

      /* compute the real part as u*v, rounded away                    */
      /* determine also the sign of inex_re                            */
      if (mpfr_sgn (u) == 0 || mpfr_sgn (v) == 0)
        {
          /* as we have rounded away, the result is exact */
          mpfr_set_ui (mpc_realref (rop), 0, GMP_RNDN);
          inex_re = 0;
          ok = 1;
        }
      else if (mpfr_sgn (u) * mpfr_sgn (v) > 0)
        {
          inexact |= mpfr_mul (u, u, v, GMP_RNDU); /* error 5 */
          /* checks that no overflow nor underflow occurs: since u*v > 0
             and we round up, an overflow will give +Inf, but an underflow
             will give 0.5*2^emin */
          MPC_ASSERT (mpfr_get_exp (u) != emin);
          if (mpfr_inf_p (u))
            {
              /* let mpc_realref(rop) be a "correctly rounded overflow" */
              inex_re = mpfr_set_ui_2exp (mpc_realref (rop), 1, emax, MPC_RND_RE (rnd));
              break;
            }
          ok = (!inexact) | mpfr_can_round (u, prec - 3, GMP_RNDU, GMP_RNDZ,
               MPC_PREC_RE (rop) + (MPC_RND_RE (rnd) == GMP_RNDN));
          if (ok)
            {
              inex_re = mpfr_set (mpc_realref (rop), u, MPC_RND_RE (rnd));
              if (inex_re == 0)
                /* remember that u was already rounded */
                inex_re = inexact;
            }
        }
      else
        {
          inexact |= mpfr_mul (u, u, v, GMP_RNDD); /* error 5 */
          /* checks that no overflow occurs: since u*v < 0 and we round down,
             an overflow will give -Inf */
          MPC_ASSERT (mpfr_inf_p (u) == 0);
          /* if an underflow happens (i.e., u = -0.5*2^emin since we round
             away from zero), the result will be an underflow */
          if (mpfr_get_exp (u) == emin)
            {
              mpfr_rnd_t rnd_re = MPC_RND_RE (rnd);
              if (rnd_re == GMP_RNDZ || rnd_re == GMP_RNDN ||
                  rnd_re == GMP_RNDU)
                {
                  mpfr_set_ui (mpc_realref (rop), 0, rnd_re);
                  inex_re = 1;
                }
              else /* round down or away from zero */ {
                mpfr_set (mpc_realref (rop), u, rnd_re);
                inex_re = -1;
              }
              break;
            }
          ok = (!inexact) | mpfr_can_round (u, prec - 3, GMP_RNDD, GMP_RNDZ,
               MPC_PREC_RE (rop) + (MPC_RND_RE (rnd) == GMP_RNDN));
          if (ok)
            {
              inex_re = mpfr_set (mpc_realref (rop), u, MPC_RND_RE (rnd));
              if (inex_re == 0)
                inex_re = inexact;
            }
        }
   }
   while (!ok);

   /* compute the imaginary part as 2*x*y, which is always possible */
   if (mpfr_get_exp (x) + mpfr_get_exp(mpc_imagref (op)) <= emin + 1)
     {
       mpfr_mul_2ui (x, x, 1, GMP_RNDN);
       inex_im = mpfr_mul (mpc_imagref (rop), x, mpc_imagref (op), MPC_RND_IM (rnd));
     }
   else
     {
       inex_im = mpfr_mul (mpc_imagref (rop), x, mpc_imagref (op), MPC_RND_IM (rnd));
       /* checks that no underflow occurs (an overflow can occur here) */
       MPC_ASSERT (mpfr_zero_p (mpc_imagref (rop)) == 0);
       mpfr_mul_2ui (mpc_imagref (rop), mpc_imagref (rop), 1, GMP_RNDN);
     }

   mpfr_clear (u);
   mpfr_clear (v);

   if (rop == op)
      mpfr_clear (x);

   return MPC_INEX (inex_re, inex_im);
}