summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorvlefevre <vlefevre@280ebfd0-de03-0410-8827-d642c229c3f4>2017-12-18 16:04:59 +0000
committervlefevre <vlefevre@280ebfd0-de03-0410-8827-d642c229c3f4>2017-12-18 16:04:59 +0000
commit1fc92eea3c19f3199610d85b5c0abf598882e919 (patch)
treed9faf9b55e14acfb416df345d34226ef1c5eb0b3
parent444e474828d5f87800458a2977f86f428373f77d (diff)
downloadmpfr-1fc92eea3c19f3199610d85b5c0abf598882e919.tar.gz
[doc/algorithms.tex] mpfr_tanh: corrected bounds (thanks to Paul).
git-svn-id: svn://scm.gforge.inria.fr/svn/mpfr/trunk@12004 280ebfd0-de03-0410-8827-d642c229c3f4
-rw-r--r--doc/algorithms.tex10
1 files changed, 5 insertions, 5 deletions
diff --git a/doc/algorithms.tex b/doc/algorithms.tex
index e15591e75..c2bb689ad 100644
--- a/doc/algorithms.tex
+++ b/doc/algorithms.tex
@@ -1865,7 +1865,7 @@ and then $s = \tanh(x) \cdot (1+\theta_4)^{2^k+4}$.
\begin{lemma}
For $0 < x \leq 1/2$ and $0 < y \leq x^{-1/2}$, we have:
-\[ 0 < (1+x)^y - 1 \leq 1.2 \cdot y \cdot x. \]
+\[ 0 < (1+x)^y - 1 \leq 1.4 \cdot y \cdot x. \]
\end{lemma}
\begin{proof}
We have $(1+x)^y = e^{y \cdot \log(1+x)}$, with
@@ -1876,8 +1876,8 @@ Thus $0 < y \cdot \log(1+x) < 0.574$.
Now it is easy to see that for $0 < t < 0.574$, we have
$|e^t-1| \leq 1.4\,t$.
Thus $0 < (1+x)^y - 1 \leq 1.4 \cdot y \cdot \log(1+x)$.
-The result follows from $\log(1+x) \leq 0.82\,x$ for
-$0 < x \leq 1/2$, and $1.4 \times 0.82 \leq 1.2$.
+The result follows from $\log(1+x) \leq x$ for
+$0 < x \leq 1/2$.
\end{proof}
First, note that for $t > 0$ and $q \geq 1$, one has
@@ -1886,8 +1886,8 @@ development. Thus $|(1+\theta_4)^{2^k+4} - 1| \leq |(1+2^{-p})^{2^k+4} - 1|$.
Then one can apply the above lemma for $x=2^{-p}$ and $y=2^k+4$,
assuming $2^k+4 \leq 2^{p/2}$.
We get $|(1+\theta_4)^{2^k+4} - 1| \leq |(1+2^{-p})^{2^k+4} - 1|
-\leq 1.2 (2^k+4) 2^{-p}$, and thus
-we can write $s = \tanh(x) [1 + 1.2 (2^k+4)\theta_5]$ with
+\leq 1.4 (2^k+4) 2^{-p}$, and thus
+we can write $s = \tanh(x) [1 + 1.4 (2^k+4)\theta_5]$ with
$|\theta_5| \leq 2^{-p}$.
Since $2^k+4 \leq 2^{{\rm max}(3,k+1)}$,
the relative error on $s$ is thus bounded by $2^{{\rm max}(4,k+2)-p}$.