summaryrefslogtreecommitdiff
path: root/const_pi.c
diff options
context:
space:
mode:
authorvlefevre <vlefevre@280ebfd0-de03-0410-8827-d642c229c3f4>2001-12-06 16:53:25 +0000
committervlefevre <vlefevre@280ebfd0-de03-0410-8827-d642c229c3f4>2001-12-06 16:53:25 +0000
commit60f681a1bcdd44906e3af2adaa11dfaeda54441b (patch)
tree723bd4bcb783f510685677a4fd130e4963cc0243 /const_pi.c
parent2dcf01add84f5bcabf924b4b6ab156f81c73fdb1 (diff)
downloadmpfr-60f681a1bcdd44906e3af2adaa11dfaeda54441b.tar.gz
Functions (constants) renamed.
git-svn-id: svn://scm.gforge.inria.fr/svn/mpfr/trunk@1628 280ebfd0-de03-0410-8827-d642c229c3f4
Diffstat (limited to 'const_pi.c')
-rw-r--r--const_pi.c220
1 files changed, 220 insertions, 0 deletions
diff --git a/const_pi.c b/const_pi.c
new file mode 100644
index 000000000..94ea9fb3c
--- /dev/null
+++ b/const_pi.c
@@ -0,0 +1,220 @@
+/* mpfr_const_pi -- compute Pi
+
+Copyright (C) 1999-2001 Free Software Foundation.
+
+This file is part of the MPFR Library.
+
+The MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 2.1 of the License, or (at your
+option) any later version.
+
+The MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the MPFR Library; see the file COPYING.LIB. If not, write to
+the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
+MA 02111-1307, USA. */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include "gmp.h"
+#include "gmp-impl.h"
+#include "longlong.h"
+#include "mpfr.h"
+#include "mpfr-impl.h"
+
+static int mpfr_aux_pi _PROTO ((mpfr_ptr, mpz_srcptr, int, int));
+static int mpfr_pi_machin3 _PROTO ((mpfr_ptr, mp_rnd_t));
+
+#define A
+#define A1 1
+#define A2 2
+#undef B
+#define C
+#define C1 3
+#define C2 2
+#define GENERIC mpfr_aux_pi
+#define R_IS_RATIONAL
+#define NO_FACTORIAL
+#include "generic.c"
+
+
+static int
+mpfr_pi_machin3 (mpfr_ptr mylog, mp_rnd_t rnd_mode)
+{
+ int prec, logn, prec_x;
+ int prec_i_want=MPFR_PREC(mylog);
+ int good = 0;
+ mpfr_t tmp1, tmp2, result,tmp3,tmp4,tmp5,tmp6;
+ mpz_t cst;
+
+ MPFR_CLEAR_FLAGS(mylog);
+ logn = _mpfr_ceil_log2 ((double) MPFR_PREC(mylog));
+ prec_x = prec_i_want + logn + 5;
+ mpz_init(cst);
+ while (!good){
+ prec = _mpfr_ceil_log2 ((double) prec_x);
+
+ mpfr_init2(tmp1, prec_x);
+ mpfr_init2(tmp2, prec_x);
+ mpfr_init2(tmp3, prec_x);
+ mpfr_init2(tmp4, prec_x);
+ mpfr_init2(tmp5, prec_x);
+ mpfr_init2(tmp6, prec_x);
+ mpfr_init2(result, prec_x);
+ mpz_set_si(cst, -1);
+
+ mpfr_aux_pi(tmp1, cst, 268*268, prec - 4);
+ mpfr_div_ui(tmp1, tmp1, 268, GMP_RNDD);
+ mpfr_mul_ui(tmp1, tmp1, 61, GMP_RNDD);
+
+ mpfr_aux_pi(tmp2, cst, 343*343, prec - 4);
+ mpfr_div_ui(tmp2, tmp2, 343, GMP_RNDD);
+ mpfr_mul_ui(tmp2, tmp2, 122, GMP_RNDD);
+
+ mpfr_aux_pi(tmp3, cst, 557*557, prec - 4);
+ mpfr_div_ui(tmp3, tmp3, 557, GMP_RNDD);
+ mpfr_mul_ui(tmp3, tmp3, 115, GMP_RNDD);
+
+ mpfr_aux_pi(tmp4, cst, 1068*1068, prec - 4);
+ mpfr_div_ui(tmp4, tmp4, 1068, GMP_RNDD);
+ mpfr_mul_ui(tmp4, tmp4, 32, GMP_RNDD);
+
+ mpfr_aux_pi(tmp5, cst, 3458*3458, prec - 4);
+ mpfr_div_ui(tmp5, tmp5, 3458, GMP_RNDD);
+ mpfr_mul_ui(tmp5, tmp5, 83, GMP_RNDD);
+
+ mpfr_aux_pi(tmp6, cst, 27493*27493, prec - 4);
+ mpfr_div_ui(tmp6, tmp6, 27493, GMP_RNDD);
+ mpfr_mul_ui(tmp6, tmp6, 44, GMP_RNDD);
+
+ mpfr_add(result, tmp1, tmp2, GMP_RNDD);
+ mpfr_add(result, result, tmp3, GMP_RNDD);
+ mpfr_sub(result, result, tmp4, GMP_RNDD);
+ mpfr_add(result, result, tmp5, GMP_RNDD);
+ mpfr_add(result, result, tmp6, GMP_RNDD);
+ mpfr_mul_2exp(result, result, 2, GMP_RNDD);
+ mpfr_clear(tmp1);
+ mpfr_clear(tmp2);
+ mpfr_clear(tmp3);
+ mpfr_clear(tmp4);
+ mpfr_clear(tmp5);
+ mpfr_clear(tmp6);
+ if (mpfr_can_round(result, prec_x - 5, GMP_RNDD, rnd_mode, prec_i_want)){
+ mpfr_set(mylog, result, rnd_mode);
+ mpfr_clear(result);
+ good = 1;
+ } else
+ {
+ mpfr_clear(result);
+ prec_x += logn;
+ }
+ }
+ mpz_clear(cst);
+ return 0;
+}
+
+/*
+Set x to the value of Pi to precision MPFR_PREC(x) rounded to direction rnd_mode.
+Use the formula giving the binary representation of Pi found by Simon Plouffe
+and the Borwein's brothers:
+
+ infinity 4 2 1 1
+ ----- ------- - ------- - ------- - -------
+ \ 8 n + 1 8 n + 4 8 n + 5 8 n + 6
+ Pi = ) -------------------------------------
+ / n
+ ----- 16
+ n = 0
+
+i.e. Pi*16^N = S(N) + R(N) where
+S(N) = sum(16^(N-n)*(4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6)), n=0..N-1)
+R(N) = sum((4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6))/16^(n-N), n=N..infinity)
+
+Let f(n) = 4/(8*n+1)-2/(8*n+4)-1/(8*n+5)-1/(8*n+6), we can show easily that
+f(n) < 15/(64*n^2), so R(N) < sum(15/(64*n^2)/16^(n-N), n=N..infinity)
+ < 15/64/N^2*sum(1/16^(n-N), n=N..infinity)
+ = 1/4/N^2
+
+Now let S'(N) = sum(floor(16^(N-n)*(120*n^2+151*n+47),
+ (512*n^4+1024*n^3+712*n^2+194*n+15)), n=0..N-1)
+
+S(N)-S'(N) <= sum(1, n=0..N-1) = N
+
+so Pi*16^N-S'(N) <= N+1 (as 1/4/N^2 < 1)
+*/
+
+mpfr_t __mpfr_const_pi; /* stored value of Pi */
+int __mpfr_const_pi_prec=0; /* precision of stored value */
+mp_rnd_t __mpfr_const_pi_rnd; /* rounding mode of stored value */
+
+void
+mpfr_const_pi (mpfr_ptr x, mp_rnd_t rnd_mode)
+{
+ int N, oldN, n, prec; mpz_t pi, num, den, d3, d2, tmp; mpfr_t y;
+
+ prec=MPFR_PREC(x);
+
+ /* has stored value enough precision ? */
+ if ((prec==__mpfr_const_pi_prec && rnd_mode==__mpfr_const_pi_rnd) ||
+ (prec<=__mpfr_const_pi_prec &&
+ mpfr_can_round(__mpfr_const_pi, __mpfr_const_pi_prec,
+ __mpfr_const_pi_rnd, rnd_mode, prec)))
+ {
+ mpfr_set(x, __mpfr_const_pi, rnd_mode); return;
+ }
+
+ if (prec < 20000){
+ /* need to recompute */
+ N=1;
+ do {
+ oldN = N;
+ N = (prec+3)/4 + _mpfr_ceil_log2((double) N + 1.0);
+ } while (N != oldN);
+ mpz_init(pi); mpz_init(num); mpz_init(den); mpz_init(d3); mpz_init(d2);
+ mpz_init(tmp);
+ mpz_set_ui(pi, 0);
+ mpz_set_ui(num, 16); /* num(-1) */
+ mpz_set_ui(den, 21); /* den(-1) */
+ mpz_set_si(d3, -2454);
+ mpz_set_ui(d2, 14736);
+ /* invariants: num=120*n^2+151*n+47, den=512*n^4+1024*n^3+712*n^2+194*n+15
+ d3 = 2048*n^3+400*n-6, d2 = 6144*n^2-6144*n+2448
+ */
+ for (n=0; n<N; n++) {
+ /* num(n)-num(n-1) = 240*n+31 */
+ mpz_add_ui(num, num, 240*n+31); /* no overflow up to MPFR_PREC=71M */
+ /* d2(n) - d2(n-1) = 12288*(n-1) */
+ if (n>0) mpz_add_ui(d2, d2, 12288*(n-1));
+ else mpz_sub_ui(d2, d2, 12288);
+ /* d3(n) - d3(n-1) = d2 */
+ mpz_add(d3, d3, d2);
+ /* den(n)-den(n-1) = 2048*n^3 + 400n - 6 = d3 */
+ mpz_add(den, den, d3);
+ mpz_mul_2exp(tmp, num, 4*(N-n));
+ mpz_fdiv_q(tmp, tmp, den);
+ mpz_add(pi, pi, tmp);
+ }
+ mpfr_set_z(x, pi, rnd_mode);
+ mpfr_init2(y, mpfr_get_prec(x));
+ mpz_add_ui(pi, pi, N+1);
+ mpfr_set_z(y, pi, rnd_mode);
+ if (mpfr_cmp(x, y) != 0) {
+ fprintf(stderr, "does not converge\n"); exit(1);
+ }
+ MPFR_EXP(x) -= 4*N;
+ mpz_clear(pi); mpz_clear(num); mpz_clear(den); mpz_clear(d3); mpz_clear(d2);
+ mpz_clear(tmp); mpfr_clear(y);
+ } else
+ mpfr_pi_machin3(x, rnd_mode);
+ /* store computed value */
+ if (__mpfr_const_pi_prec==0) mpfr_init2(__mpfr_const_pi, prec);
+ else mpfr_set_prec(__mpfr_const_pi, prec);
+ mpfr_set(__mpfr_const_pi, x, rnd_mode);
+ __mpfr_const_pi_prec=prec;
+ __mpfr_const_pi_rnd=rnd_mode;
+}