diff options
author | zimmerma <zimmerma@280ebfd0-de03-0410-8827-d642c229c3f4> | 2005-04-30 10:36:21 +0000 |
---|---|---|
committer | zimmerma <zimmerma@280ebfd0-de03-0410-8827-d642c229c3f4> | 2005-04-30 10:36:21 +0000 |
commit | 25b7f37736a6d1b86eb309329056a3048f617a03 (patch) | |
tree | b034e5ed4bcbc4bc39e0711e5765035df8339b16 /eint.c | |
parent | 2f182aee80283000ad85b19f43078df3b00555f8 (diff) | |
download | mpfr-25b7f37736a6d1b86eb309329056a3048f617a03.tar.gz |
added mpfr_eint
git-svn-id: svn://scm.gforge.inria.fr/svn/mpfr/trunk@3502 280ebfd0-de03-0410-8827-d642c229c3f4
Diffstat (limited to 'eint.c')
-rw-r--r-- | eint.c | 217 |
1 files changed, 217 insertions, 0 deletions
@@ -0,0 +1,217 @@ +/* mpfr_eint, mpfr_eint1 -- the exponential integral + +Copyright 2005 Free Software Foundation, Inc. + +This file is part of the MPFR Library. + +The MPFR Library is free software; you can redistribute it and/or modify +it under the terms of the GNU Lesser General Public License as published by +the Free Software Foundation; either version 2.1 of the License, or (at your +option) any later version. + +The MPFR Library is distributed in the hope that it will be useful, but +WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public +License for more details. + +You should have received a copy of the GNU Lesser General Public License +along with the MPFR Library; see the file COPYING.LIB. If not, write to +the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, +MA 02111-1307, USA. */ + +#define MPFR_NEED_LONGLONG_H +#include "mpfr-impl.h" + +/* eint1(x) = -gamma - log(x) - sum((-1)^k*z^k/k/k!, k=1..infinity) for x > 0 + = - eint(-x) for x < 0 + where + eint (x) = gamma + log(x) + sum(z^k/k/k!, k=1..infinity) for x > 0 + eint (x) is undefined for x < 0. +*/ + +/* compute in y an approximation of sum(x^k/k/k!, k=1..infinity), + and return e such that the absolute error is bound by 2^e ulp(y) */ +static mp_exp_t +mpfr_eint_aux (mpfr_t y, mpfr_srcptr x) +{ + mp_prec_t w = MPFR_PREC(y), w_minus_e; + unsigned long k; + mpz_t m, s, t, u; + mp_exp_t e; + mpfr_t eps; /* dynamic (absolute) error bound on t */ + mpfr_t erru, errs; + + mpz_init (s); /* initializes to 0 */ + mpz_init (t); + mpz_init (u); + mpz_init (m); + mpfr_init2 (eps, 31); + mpfr_init2 (erru, 31); + mpfr_init2 (errs, 31); + e = mpfr_get_z_exp (m, x); /* x = m * 2^e */ + if (mpz_sizeinbase (m, 2) > w) + { + e += mpz_sizeinbase (m, 2) - w; + mpz_tdiv_q_2exp (m, m, mpz_sizeinbase (m, 2) - w); + } + MPFR_ASSERTN(e < 0 || w >= (mp_prec_t) e); + w_minus_e = (e < 0) ? w + (-e) : w - (mp_prec_t) e; + /* initialize t to 2^w */ + mpz_set_ui (t, 1); + mpz_mul_2exp (t, t, w); + mpfr_set_ui (eps, 0, GMP_RNDN); /* eps[0] = 0 */ + mpfr_set_ui (errs, 0, GMP_RNDN); + for (k = 1;; k++) + { + /* let eps[k] be the absolute error on t[k]: + since t[k] = trunc(t[k-1]*m*2^e/k), we have + eps[k+1] <= 1 + eps[k-1]*m*2^e/k + t[k-1]*m*2^(1-w)*2^e/k + = 1 + (eps[k-1] + t[k-1]*2^(1-w))*m*2^e/k + = 1 + (eps[k-1]*2^(w-1) + t[k-1])*2^(1-w)*m*2^e/k */ + mpfr_mul_2exp (eps, eps, w - 1, GMP_RNDU); + mpfr_add_z (eps, eps, t, GMP_RNDU); + mpfr_div_2exp (eps, eps, w - 1, GMP_RNDU); + mpfr_mul_2exp (eps, eps, mpz_sizeinbase (m, 2), GMP_RNDU); + if (e < 0) + mpfr_div_2exp (eps, eps, -e, GMP_RNDU); + else + mpfr_mul_2exp (eps, eps, e, GMP_RNDU); + mpfr_div_ui (eps, eps, k, GMP_RNDU); + mpfr_add_ui (eps, eps, 1, GMP_RNDU); + mpz_mul (t, t, m); + if (e < 0) + mpz_tdiv_q_2exp (t, t, -e); + else + mpz_mul_2exp (t, t, e); + mpz_tdiv_q_ui (t, t, k); + mpz_tdiv_q_ui (u, t, k); + mpz_add (s, s, u); + /* the absolute error on u is <= 1 + eps[k]/k */ + mpfr_div_ui (erru, eps, k, GMP_RNDU); + mpfr_add_ui (erru, erru, 1, GMP_RNDU); + /* and that on s is the sum of all errors on u */ + mpfr_add (errs, errs, erru, GMP_RNDU); + /* we are done when t is smaller than errs */ + if (mpz_sizeinbase (t, 2) < MPFR_EXP(errs)) + break; + } + /* the truncation error is bounded by (|t|+eps)/k*(|x|/k + |x|^2/k^2 + ...) + <= (|t|+eps)/k*|x|/(k-|x|) */ + mpz_abs (t, t); + mpfr_add_z (eps, eps, t, GMP_RNDU); + mpfr_div_ui (eps, eps, k, GMP_RNDU); + mpfr_abs (erru, x, GMP_RNDU); /* |x| */ + mpfr_mul (eps, eps, erru, GMP_RNDU); + mpfr_ui_sub (erru, k, erru, GMP_RNDD); + MPFR_ASSERTN(MPFR_SIGN(erru) > 0); + mpfr_div (eps, eps, erru, GMP_RNDU); + mpfr_add (errs, errs, eps, GMP_RNDU); + mpfr_set_z (y, s, GMP_RNDN); + mpfr_div_2exp (y, y, w, GMP_RNDN); + /* errs was an absolute error bound on s. We must convert it to an error + in terms of ulp(y). Since ulp(y) = 2^(EXP(y)-PREC(y)), we must + divide the error by 2^(EXP(y)-PREC(y)), but since we divided also + y by 2^w = 2^PREC(y), we must simply divide by 2^EXP(y). */ + e = MPFR_EXP(errs) - MPFR_EXP(y); + mpfr_clear (eps); + mpfr_clear (erru); + mpfr_clear (errs); + mpz_clear (s); + mpz_clear (t); + mpz_clear (u); + mpz_clear (m); + return e; +} + +int +mpfr_eint (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd) +{ + int inex; + mpfr_t tmp, ump; + mp_exp_t err, te; + mp_prec_t prec; + MPFR_SAVE_EXPO_DECL (expo); + MPFR_ZIV_DECL (loop); + + MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd), + ("y[%#R]=%R inexact=%d", y, y, inex)); + + if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) + { + /* exp(NaN) = exp(-Inf) = NaN */ + if (MPFR_IS_NAN (x) || (MPFR_IS_INF (x) && MPFR_IS_NEG(x))) + { + MPFR_SET_NAN (y); + MPFR_RET_NAN; + } + /* eint(+inf) = +inf */ + else if (MPFR_IS_INF (x)) + { + MPFR_SET_INF(y); + MPFR_SET_POS(y); + MPFR_RET(0); + } + else /* eint(+/-0) = -Inf */ + { + MPFR_SET_INF(y); + MPFR_SET_NEG(y); + MPFR_RET(0); + } + } + + /* eint(x) = NaN for x < 0 */ + if (MPFR_IS_NEG(x)) + { + MPFR_SET_NAN (y); + MPFR_RET_NAN; + } + + /* Init stuff */ + MPFR_SAVE_EXPO_MARK (expo); + prec = MPFR_PREC (y) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 6; + mpfr_init2 (tmp, prec); + mpfr_init2 (ump, prec); + + /* eint() has a root 0.37250741078136663446..., so if x is near, + already take more bits */ + if (MPFR_EXP(x) == -1) /* 1/4 <= x < 1/2 */ + { + double d; + d = mpfr_get_d (x, GMP_RNDN) - 0.37250741078136663; + d = (d == 0.0) ? -53 : __gmpfr_ceil_log2 (d); + prec += -d; + } + + MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controler */ + for (;;) /* Infinite loop */ + { + err = mpfr_eint_aux (tmp, x); /* error <= 2^err ulp(tmp) */ + te = MPFR_EXP(tmp); + mpfr_const_euler (ump, GMP_RNDN); /* 0.577 -> EXP(ump)=0 */ + mpfr_add (tmp, tmp, ump, GMP_RNDN); + /* error <= 1/2 + 1/2*2^(EXP(ump)-EXP(tmp)) + 2^(te-EXP(tmp)+err) + <= 1/2 + 2^(MAX(EXP(ump), te+err+1) - EXP(tmp)) + <= 2^(MAX(0, 1 + MAX(EXP(ump), te+err+1) - EXP(tmp))) */ + err = MAX(1, te + err + 2) - MPFR_EXP(tmp); + err = MAX(0, err); + te = MPFR_EXP(tmp); + mpfr_log (ump, x, GMP_RNDN); + mpfr_add (tmp, tmp, ump, GMP_RNDN); + /* same formula as above, except now EXP(ump) is not 0 */ + err = MAX(0, 1 + MAX(MPFR_EXP(ump), te + err + 1) - MPFR_EXP(tmp)); + err = MPFR_PREC(tmp) - err; + if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, err, MPFR_PREC (y), rnd))) + break; + MPFR_ZIV_NEXT (loop, prec); /* Increase used precision */ + mpfr_set_prec (tmp, prec); + mpfr_set_prec (ump, prec); + } + MPFR_ZIV_FREE (loop); /* Free the ZivLoop Controler */ + + inex = mpfr_set (y, tmp, rnd); /* Set y to the computed value */ + mpfr_clear (tmp); + mpfr_clear (ump); + + MPFR_SAVE_EXPO_FREE (expo); + return mpfr_check_range (y, inex, rnd); +} |