summaryrefslogtreecommitdiff
path: root/src/agm.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/agm.c')
-rw-r--r--src/agm.c177
1 files changed, 177 insertions, 0 deletions
diff --git a/src/agm.c b/src/agm.c
new file mode 100644
index 000000000..7ec4a3670
--- /dev/null
+++ b/src/agm.c
@@ -0,0 +1,177 @@
+/* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers
+
+Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
+Contributed by the Arenaire and Caramel projects, INRIA.
+
+This file is part of the GNU MPFR Library.
+
+The GNU MPFR Library is free software; you can redistribute it and/or modify
+it under the terms of the GNU Lesser General Public License as published by
+the Free Software Foundation; either version 3 of the License, or (at your
+option) any later version.
+
+The GNU MPFR Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
+License for more details.
+
+You should have received a copy of the GNU Lesser General Public License
+along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
+http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
+51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
+
+#define MPFR_NEED_LONGLONG_H
+#include "mpfr-impl.h"
+
+/* agm(x,y) is between x and y, so we don't need to save exponent range */
+int
+mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mpfr_rnd_t rnd_mode)
+{
+ int compare, inexact;
+ mp_size_t s;
+ mpfr_prec_t p, q;
+ mp_limb_t *up, *vp, *tmpp;
+ mpfr_t u, v, tmp;
+ unsigned long n; /* number of iterations */
+ unsigned long err = 0;
+ MPFR_ZIV_DECL (loop);
+ MPFR_TMP_DECL(marker);
+
+ MPFR_LOG_FUNC (("op2[%#R]=%R op1[%#R]=%R rnd=%d", op2,op2,op1,op1,rnd_mode),
+ ("r[%#R]=%R inexact=%d", r, r, inexact));
+
+ /* Deal with special values */
+ if (MPFR_ARE_SINGULAR (op1, op2))
+ {
+ /* If a or b is NaN, the result is NaN */
+ if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2))
+ {
+ MPFR_SET_NAN(r);
+ MPFR_RET_NAN;
+ }
+ /* now one of a or b is Inf or 0 */
+ /* If a and b is +Inf, the result is +Inf.
+ Otherwise if a or b is -Inf or 0, the result is NaN */
+ else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2))
+ {
+ if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2))
+ {
+ MPFR_SET_INF(r);
+ MPFR_SET_SAME_SIGN(r, op1);
+ MPFR_RET(0); /* exact */
+ }
+ else
+ {
+ MPFR_SET_NAN(r);
+ MPFR_RET_NAN;
+ }
+ }
+ else /* a and b are neither NaN nor Inf, and one is zero */
+ { /* If a or b is 0, the result is +0 since a sqrt is positive */
+ MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2));
+ MPFR_SET_POS (r);
+ MPFR_SET_ZERO (r);
+ MPFR_RET (0); /* exact */
+ }
+ }
+
+ /* If a or b is negative (excluding -Infinity), the result is NaN */
+ if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)))
+ {
+ MPFR_SET_NAN(r);
+ MPFR_RET_NAN;
+ }
+
+ /* Precision of the following calculus */
+ q = MPFR_PREC(r);
+ p = q + MPFR_INT_CEIL_LOG2(q) + 15;
+ MPFR_ASSERTD (p >= 7); /* see algorithms.tex */
+ s = (p - 1) / GMP_NUMB_BITS + 1;
+
+ /* b (op2) and a (op1) are the 2 operands but we want b >= a */
+ compare = mpfr_cmp (op1, op2);
+ if (MPFR_UNLIKELY( compare == 0 ))
+ {
+ mpfr_set (r, op1, rnd_mode);
+ MPFR_RET (0); /* exact */
+ }
+ else if (compare > 0)
+ {
+ mpfr_srcptr t = op1;
+ op1 = op2;
+ op2 = t;
+ }
+ /* Now b(=op2) >= a (=op1) */
+
+ MPFR_TMP_MARK(marker);
+
+ /* Main loop */
+ MPFR_ZIV_INIT (loop, p);
+ for (;;)
+ {
+ mpfr_prec_t eq;
+
+ /* Init temporary vars */
+ MPFR_TMP_INIT (up, u, p, s);
+ MPFR_TMP_INIT (vp, v, p, s);
+ MPFR_TMP_INIT (tmpp, tmp, p, s);
+
+ /* Calculus of un and vn */
+ mpfr_mul (u, op1, op2, MPFR_RNDN); /* Faster since PREC(op) < PREC(u) */
+ mpfr_sqrt (u, u, MPFR_RNDN);
+ mpfr_add (v, op1, op2, MPFR_RNDN); /* add with !=prec is still good*/
+ mpfr_div_2ui (v, v, 1, MPFR_RNDN);
+ n = 1;
+ while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2)
+ {
+ mpfr_add (tmp, u, v, MPFR_RNDN);
+ mpfr_div_2ui (tmp, tmp, 1, MPFR_RNDN);
+ /* See proof in algorithms.tex */
+ if (4*eq > p)
+ {
+ mpfr_t w;
+ /* tmp = U(k) */
+ mpfr_init2 (w, (p + 1) / 2);
+ mpfr_sub (w, v, u, MPFR_RNDN); /* e = V(k-1)-U(k-1) */
+ mpfr_sqr (w, w, MPFR_RNDN); /* e = e^2 */
+ mpfr_div_2ui (w, w, 4, MPFR_RNDN); /* e*= (1/2)^2*1/4 */
+ mpfr_div (w, w, tmp, MPFR_RNDN); /* 1/4*e^2/U(k) */
+ mpfr_sub (v, tmp, w, MPFR_RNDN);
+ err = MPFR_GET_EXP (tmp) - MPFR_GET_EXP (v); /* 0 or 1 */
+ mpfr_clear (w);
+ break;
+ }
+ mpfr_mul (u, u, v, MPFR_RNDN);
+ mpfr_sqrt (u, u, MPFR_RNDN);
+ mpfr_swap (v, tmp);
+ n ++;
+ }
+ /* the error on v is bounded by (18n+51) ulps, or twice if there
+ was an exponent loss in the final subtraction */
+ err += MPFR_INT_CEIL_LOG2(18 * n + 51); /* 18n+51 should not overflow
+ since n is about log(p) */
+ /* we should have n+2 <= 2^(p/4) [see algorithms.tex] */
+ if (MPFR_LIKELY (MPFR_INT_CEIL_LOG2(n + 2) <= p / 4 &&
+ MPFR_CAN_ROUND (v, p - err, q, rnd_mode)))
+ break; /* Stop the loop */
+
+ /* Next iteration */
+ MPFR_ZIV_NEXT (loop, p);
+ s = (p - 1) / GMP_NUMB_BITS + 1;
+ }
+ MPFR_ZIV_FREE (loop);
+
+ /* Setting of the result */
+ inexact = mpfr_set (r, v, rnd_mode);
+
+ /* Let's clean */
+ MPFR_TMP_FREE(marker);
+
+ return inexact; /* agm(u,v) can be exact for u, v rational only for u=v.
+ Proof (due to Nicolas Brisebarre): it suffices to consider
+ u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2),
+ and a theorem due to G.V. Chudnovsky states that for x a
+ non-zero algebraic number with |x|<1, then
+ 2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically
+ independent over Q. */
+}