/* mpfr_acosh -- Inverse Hyperbolic Cosine of Unsigned Integer Number Copyright 2001, 2002 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" /* The computation of acosh is done by acosh= ln(x+sqrt(x-1)*sqrt(x+1)) */ int mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mp_rnd_t rnd_mode) { int inexact =0; int comp; if (MPFR_IS_NAN(x)) { MPFR_SET_NAN(y); MPFR_RET_NAN; } comp=mpfr_cmp_ui(x,1); if(comp < 0) { MPFR_SET_NAN(y); MPFR_RET_NAN; } MPFR_CLEAR_NAN(y); if(comp == 0) { MPFR_SET_ZERO(y); /* acosh(1) = 0 */ MPFR_SET_POS(y); MPFR_RET(0); } if (MPFR_IS_INF(x)) { MPFR_SET_INF(y); MPFR_SET_POS(y); MPFR_RET(0); } MPFR_CLEAR_INF(y); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, te,ti; /* Declaration of the size variable */ mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */ mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ int err; /* Precision of error */ /* compute the precision of intermediary variable */ Nt=MAX(Nx,Ny); /* the optimal number of bits : see algorithms.ps */ Nt=Nt+4+_mpfr_ceil_log2(Nt); /* initialise of intermediary variable */ mpfr_init(t); mpfr_init(te); mpfr_init(ti); /* First computation of cosh */ do { /* reactualisation of the precision */ mpfr_set_prec(t,Nt); mpfr_set_prec(te,Nt); mpfr_set_prec(ti,Nt); /* compute acosh */ mpfr_mul(te,x,x,GMP_RNDD); /* (x^2) */ mpfr_sub_ui(ti,te,1,GMP_RNDD); /* (x^2-1) */ mpfr_sqrt(t,ti,GMP_RNDN); /* sqrt(x^2-1) */ mpfr_add(t,t,x,GMP_RNDN); /* sqrt(x^2-1)+x */ mpfr_log(t,t,GMP_RNDN); /* ln(sqrt(x^2-1)+x)*/ /* estimation of the error see- algorithms.ps*/ /*err=Nt-_mpfr_ceil_log2(0.5+pow(2,2-MPFR_EXP(t))+pow(2,1+MPFR_EXP(te)-MPFR_EXP(ti)-MPFR_EXP(t)));*/ err=Nt-(-1+2*MAX(2+MAX(2-MPFR_EXP(t),1+MPFR_EXP(te)-MPFR_EXP(ti)-MPFR_EXP(t)),0)); /* actualisation of the precision */ Nt += 10; } while ((err<0) ||!mpfr_can_round(t,err,GMP_RNDN,rnd_mode,Ny)); inexact = mpfr_set(y,t,rnd_mode); mpfr_clear(t); mpfr_clear(ti); mpfr_clear(te); } return inexact; }