/* mpfr_acosh -- inverse hyperbolic cosine Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of acosh is done by * * acosh= ln(x + sqrt(x^2-1)) */ int mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mp_rnd_t rnd_mode) { MPFR_SAVE_EXPO_DECL (expo); int inexact; int comp; MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("y[%#R]=%R inexact=%d", y, y, inexact)); /* Deal with special cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { /* Nan, or zero or -Inf */ if (MPFR_IS_INF (x) && MPFR_IS_POS (x)) { MPFR_SET_INF (y); MPFR_SET_POS (y); MPFR_RET (0); } else /* Nan, or zero or -Inf */ { MPFR_SET_NAN (y); MPFR_RET_NAN; } } comp = mpfr_cmp_ui (x, 1); if (MPFR_UNLIKELY (comp < 0)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_UNLIKELY (comp == 0)) { MPFR_SET_ZERO (y); /* acosh(1) = 0 */ MPFR_SET_POS (y); MPFR_RET (0); } MPFR_SAVE_EXPO_MARK (expo); /* General case */ { /* Declaration of the intermediary variables */ mpfr_t t; /* Declaration of the size variables */ mp_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ mp_exp_t err, exp_te, exp_ti; /* Precision of error */ MPFR_ZIV_DECL (loop); /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny); /* initialization of intermediary variables */ mpfr_init2 (t, Nt); /* First computation of acosh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute acosh */ mpfr_mul (t, x, x, GMP_RNDD); /* x^2 */ exp_te = MPFR_GET_EXP (t); mpfr_sub_ui (t, t, 1, GMP_RNDD); /* x^2-1 */ exp_ti = MPFR_GET_EXP (t); mpfr_sqrt (t, t, GMP_RNDN); /* sqrt(x^2-1) */ mpfr_add (t, t, x, GMP_RNDN); /* sqrt(x^2-1)+x */ mpfr_log (t, t, GMP_RNDN); /* ln(sqrt(x^2-1)+x)*/ /* error estimate -- see algorithms.tex */ err = 2 + MAX (1, exp_te - exp_ti) - MPFR_GET_EXP(t); /* error is bounded by 1/2 + 2^err <= 2^(1+max(-1,err)) */ err = 1 + MAX (-1, err); if (MPFR_LIKELY (MPFR_CAN_ROUND (t, Nt - err, Ny, rnd_mode))) break; /* reactualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, t, rnd_mode); mpfr_clear (t); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }