/* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" int mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mp_rnd_t rnd_mode) { int s, go_on, compare; mp_prec_t p, q; double uo, vo; mp_limb_t *up, *vp, *tmpp, *tmpup, *tmpvp, *ap, *bp; mpfr_t u, v, tmp, tmpu, tmpv, a, b; TMP_DECL(marker); /* Deal with special values */ if (MPFR_ARE_SINGULAR(op1, op2)) { /* If a or b is NaN, the result is NaN */ if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2)) { MPFR_SET_NAN(r); MPFR_RET_NAN; } /* If a or b is negative (including -Infinity), the result is NaN */ else if (MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2)) { MPFR_SET_NAN(r); MPFR_RET_NAN; } /* If a or b is +Infinity, the result is +Infinity */ else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2)) { MPFR_SET_INF(r); MPFR_SET_SAME_SIGN(r, op1); MPFR_RET(0); /* exact */ } /* If a or b is 0, the result is 0 */ else if (MPFR_IS_ZERO(op1) || MPFR_IS_ZERO(op2)) { MPFR_SET_POS(r); MPFR_SET_ZERO(r); MPFR_RET(0); /* exact */ } else MPFR_ASSERTN(0); } MPFR_CLEAR_FLAGS(r); /* precision of the following calculus */ q = MPFR_PREC(r); p = q + 15; /* Initialisations */ go_on=1; TMP_MARK(marker); s=(p-1)/BITS_PER_MP_LIMB+1; MPFR_TMP_INIT(ap, a, p, s); MPFR_TMP_INIT(bp, b, p, s); MPFR_TMP_INIT(up, u, p, s); MPFR_TMP_INIT(vp, v, p, s); MPFR_TMP_INIT(tmpup, tmpu, p, s); MPFR_TMP_INIT(tmpvp, tmpv, p, s); MPFR_TMP_INIT(tmpp, tmp, p, s); /* b and a are the 2 operands but we want b >= a */ if ((compare = mpfr_cmp (op1,op2)) > 0) { mpfr_set (b,op1,GMP_RNDN); mpfr_set (a,op2,GMP_RNDN); } else if (compare == 0) { mpfr_set (r, op1, rnd_mode); TMP_FREE(marker); MPFR_RET(0); /* exact */ } else { mpfr_set (b,op2,GMP_RNDN); mpfr_set (a,op1,GMP_RNDN); } vo = mpfr_get_d1 (b); uo = mpfr_get_d1 (a); mpfr_set(u,a,GMP_RNDN); mpfr_set(v,b,GMP_RNDN); /* Main loop */ while (go_on) { int err, can_round; mp_prec_t eq; double erraux; erraux = (vo == uo) ? 0.0 : __gmpfr_ceil_exp2 (-2.0 * (double) p * uo / (vo - uo)); err = 1 + (int) ((3.0 / 2.0 * (double) __gmpfr_ceil_log2 ((double) p) + 1.0) * __gmpfr_ceil_exp2 (- (double) p) + 3.0 * erraux); if(p-err-3<=q) { p=q+err+4; err= 1 + (int) ((3.0/2.0*__gmpfr_ceil_log2((double)p)+1.0)*__gmpfr_ceil_exp2(-(double)p) +3.0 * erraux); } /* Calculus of un and vn */ do { mpfr_mul(tmp, u, v, GMP_RNDN); mpfr_sqrt (tmpu, tmp, GMP_RNDN); mpfr_add(tmp, u, v, GMP_RNDN); mpfr_div_2ui(tmpv, tmp, 1, GMP_RNDN); mpfr_set(u, tmpu, GMP_RNDN); mpfr_set(v, tmpv, GMP_RNDN); } while (mpfr_cmp2(u, v, &eq) != 0 && eq <= p - 2); /* Roundability of the result */ can_round = mpfr_can_round (v, p - err - 3, GMP_RNDN, GMP_RNDZ, q + (rnd_mode == GMP_RNDN)); if (can_round) go_on = 0; else { go_on = 1; p+=5; s=(p-1)/BITS_PER_MP_LIMB+1; MPFR_TMP_INIT(up, u, p, s); MPFR_TMP_INIT(vp, v, p, s); MPFR_TMP_INIT(tmpup, tmpu, p, s); MPFR_TMP_INIT(tmpvp, tmpv, p, s); MPFR_TMP_INIT(tmpp, tmp, p, s); mpfr_set(u,a,GMP_RNDN); mpfr_set(v,b,GMP_RNDN); } } /* End of while */ /* Setting of the result */ mpfr_set(r,v,rnd_mode); /* Let's clean */ TMP_FREE(marker); return 1; /* agm(u,v) can be exact for u, v rational only for u=v. Proof (due to Nicolas Brisebarre): it suffices to consider u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2), and a theorem due to G.V. Chudnovsky states that for x a non-zero algebraic number with |x|<1, then 2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically independent over Q. */ }