/* mpfr_asinh -- inverse hyperbolic sine Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of asinh is done by * * asinh = ln(x + sqrt(x^2 + 1)) */ int mpfr_asinh (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { int inexact; int signx, neg; mp_prec_t Nx, Ny, Nt; mpfr_t t; /* auxiliary variables */ mp_exp_t err; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("y[%#R]=%R inexact=%d", y, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } else /* x is necessarily 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (x)); MPFR_SET_ZERO (y); /* asinh(0) = 0 */ MPFR_SET_SAME_SIGN (y, x); MPFR_RET (0); } } Nx = MPFR_PREC (x); /* Precision of input variable */ Ny = MPFR_PREC (y); /* Precision of output variable */ signx = MPFR_SIGN (x); neg = MPFR_IS_NEG (x); /* General case */ /* compute the precision of intermediary variable */ Nt = MAX (Nx, Ny); /* the optimal number of bits : see algorithms.ps */ Nt = Nt + 4 + MPFR_INT_CEIL_LOG2 (Nt); MPFR_SAVE_EXPO_MARK (expo); /* initialize intermediary variables */ mpfr_init2 (t, Nt); /* First computation of asinh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute asinh */ mpfr_mul (t, x, x, GMP_RNDD); /* x^2 */ mpfr_add_ui (t, t, 1, GMP_RNDD); /* x^2+1 */ mpfr_sqrt (t, t, GMP_RNDN); /* sqrt(x^2+1) */ (neg ? mpfr_sub : mpfr_add) (t, t, x, GMP_RNDN); /* sqrt(x^2+1)+x */ mpfr_log (t, t, GMP_RNDN); /* ln(sqrt(x^2+1)+x)*/ /* error estimate -- see algorithms.ps */ err = Nt - (MAX (3 - MPFR_GET_EXP (t), 0) + 1); if (MPFR_LIKELY (MPFR_IS_ZERO (t) || mpfr_can_round (t, err, GMP_RNDN, GMP_RNDZ, Ny + (rnd_mode == GMP_RNDN)))) break; /* actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set4 (y, t, rnd_mode, signx); mpfr_clear (t); MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }