/* mpfr_atan -- arc-tangent of a floating-point number Copyright 2001, 2002, 2003 Free Software Foundation. This file is part of the MPFR Library, and was contributed by Mathieu Dutour. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" #define CST 2.27 /* CST=1+ln(2.4)/ln(2) */ #define CST2 1.45 /* CST2=1/ln(2) */ static int mpfr_atan_aux _MPFR_PROTO((mpfr_ptr, mpz_srcptr, long, int)); #undef B #define A #define A1 1 #define A2 2 #define C #define C1 3 #define C2 2 #define NO_FACTORIAL #define GENERIC mpfr_atan_aux #include "generic.c" #undef C #undef C1 #undef C2 #undef A #undef A1 #undef A2 #undef NO_FACTORIAL #undef GENERIC int mpfr_atan (mpfr_ptr arctangent, mpfr_srcptr x, mp_rnd_t rnd_mode) { mpfr_t Pisur2; mpfr_t xp; mpfr_t arctgt; int comparaison, signe, supplement, inexact; mpfr_t t_arctan; int i; mpz_t ukz; mpfr_t ukf; mpfr_t sk,Ak; mpz_t square; mpfr_t tmp_arctan; mpfr_t tmp, tmp2; #ifdef DEBUG mpfr_t tst; #endif int twopoweri; int Prec; int prec_x; int prec_arctan; int good = 0; int realprec; int estimated_delta; /* calculation of the floor */ mp_exp_t exptol; int N0; int logn; /* Trivial cases */ if (MPFR_UNLIKELY( MPFR_IS_SINGULAR(x) )) { if (MPFR_IS_NAN(x)) { MPFR_SET_NAN(arctangent); MPFR_RET_NAN; } else if (MPFR_IS_INF(x)) { MPFR_CLEAR_FLAGS(arctangent); if (MPFR_IS_POS(x)) /* arctan(+inf) = Pi/2 */ inexact = mpfr_const_pi (arctangent, rnd_mode); else /* arctan(-inf) = -Pi/2 */ { if (rnd_mode == GMP_RNDU) rnd_mode = GMP_RNDD; else if (rnd_mode == GMP_RNDD) rnd_mode = GMP_RNDU; inexact = -mpfr_const_pi (arctangent, rnd_mode); MPFR_CHANGE_SIGN (arctangent); } MPFR_SET_EXP (arctangent, MPFR_GET_EXP (arctangent) - 1); return inexact; } else if (MPFR_IS_ZERO(x)) { mpfr_set_ui (arctangent, 0, GMP_RNDN); return 0; /* exact result */ } MPFR_ASSERTN(1); } MPFR_CLEAR_FLAGS(arctangent); signe = MPFR_SIGN(x); prec_arctan = MPFR_PREC(arctangent); /* Set x_p=|x| */ mpfr_init2 (xp, MPFR_PREC(x)); mpfr_abs (xp, x, rnd_mode); /* Other simple case arctang(-+1)=-+pi/4 */ comparaison = mpfr_cmp_ui (xp, 1); if (comparaison == 0) { inexact = mpfr_const_pi (arctangent, rnd_mode); MPFR_SET_EXP (arctangent, MPFR_GET_EXP (arctangent) - 2); if (MPFR_IS_NEG_SIGN( signe )) { inexact = -inexact; MPFR_CHANGE_SIGN(arctangent); } mpfr_clear (xp); return inexact; } if (comparaison > 0) supplement = 2; else supplement = 2 - MPFR_GET_EXP (xp); prec_x = __gmpfr_ceil_log2 ((double) MPFR_PREC(x) / BITS_PER_MP_LIMB); logn = __gmpfr_ceil_log2 ((double) prec_x); if (logn < 2) logn = 2; realprec = prec_arctan + __gmpfr_ceil_log2((double) prec_arctan) + 4; mpz_init (ukz); mpz_init (square); while (!good) { N0 = __gmpfr_ceil_log2((double) realprec + supplement + CST); estimated_delta = 1 + supplement + __gmpfr_ceil_log2((double) (3*N0-2)); Prec = realprec+estimated_delta; /* Initialisation */ mpfr_init2(sk,Prec); mpfr_init2(ukf, Prec); mpfr_init2(t_arctan, Prec); mpfr_init2(tmp_arctan, Prec); mpfr_init2(tmp, Prec); mpfr_init2(tmp2, Prec); mpfr_init2(Ak, Prec); mpfr_init2(arctgt, Prec); if (comparaison > 0) { mpfr_init2(Pisur2, Prec); mpfr_const_pi(Pisur2, GMP_RNDN); mpfr_div_2ui(Pisur2, Pisur2, 1, GMP_RNDN); mpfr_ui_div(sk, 1, xp, GMP_RNDN); } else mpfr_set(sk, xp, GMP_RNDN); /* Assignation */ mpfr_set_ui (tmp_arctan, 0, GMP_RNDN); twopoweri = 1; for(i = 0; i <= N0; i++) { mpfr_mul_2ui(tmp, sk, twopoweri, GMP_RNDN); /* Calculation of trunc(tmp) --> mpz */ mpfr_trunc (ukf, tmp); exptol = mpfr_get_z_exp (ukz, ukf); if (exptol>0) mpz_mul_2exp (ukz, ukz, exptol); else mpz_tdiv_q_2exp (ukz, ukz, (unsigned long int) (-exptol)); /* Calculation of arctan(Ak) */ mpz_mul(square, ukz, ukz); mpz_neg(square, square); mpfr_atan_aux(t_arctan, square, 2*twopoweri, N0 - i); mpfr_set_z(Ak, ukz, GMP_RNDN); mpfr_div_2ui(Ak, Ak, twopoweri, GMP_RNDN); mpfr_mul(t_arctan, t_arctan, Ak, GMP_RNDN); /* Addition and iteration */ mpfr_add(tmp_arctan, tmp_arctan, t_arctan, GMP_RNDN); if (i 0) mpfr_sub(arctgt, Pisur2, tmp_arctan, GMP_RNDN); else mpfr_set(arctgt, tmp_arctan, GMP_RNDN); MPFR_SET_POS(arctgt); if (mpfr_can_round (arctgt, realprec, GMP_RNDN, GMP_RNDZ, MPFR_PREC (arctangent) + (rnd_mode == GMP_RNDN))) { inexact = mpfr_set (arctangent, arctgt, rnd_mode); good = 1; realprec += 1; } else { realprec += __gmpfr_ceil_log2 ((double) realprec); } mpfr_clear(sk); mpfr_clear(ukf); mpfr_clear(t_arctan); mpfr_clear(tmp_arctan); mpfr_clear(tmp); mpfr_clear(tmp2); mpfr_clear(Ak); mpfr_clear(arctgt); if (comparaison > 0) mpfr_clear(Pisur2); } mpfr_clear(xp); mpz_clear(ukz); mpz_clear(square); return inexact; }