/* mpfr_const_log2 -- compute natural logarithm of 2 Copyright 1999, 2001 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "gmp.h" #include "gmp-impl.h" #include "longlong.h" #include "mpfr.h" #include "mpfr-impl.h" mpfr_t __mpfr_const_log2; /* stored value of log(2) */ int __mpfr_const_log2_prec=0; /* precision of stored value */ mp_rnd_t __mpfr_const_log2_rnd; /* rounding mode of stored value */ static int mpfr_aux_log2 _PROTO ((mpfr_ptr, mpz_srcptr, int, int)); static int mpfr_const_aux_log2 _PROTO ((mpfr_ptr, mp_rnd_t)); #define A #define A1 1 #define A2 1 #undef B #define C #define C1 2 #define C2 1 #define NO_FACTORIAL #undef R_IS_RATIONAL #define GENERIC mpfr_aux_log2 #include "generic.c" #undef A #undef A1 #undef A2 #undef NO_FACTORIAL #undef GENERIC #undef C #undef C1 #undef C2 static int mpfr_const_aux_log2 (mpfr_ptr mylog, mp_rnd_t rnd_mode) { int prec; mpfr_t tmp1, tmp2, result,tmp3; mpz_t cst; int good = 0; int logn; int prec_i_want = MPFR_PREC(mylog); int prec_x; mpz_init(cst); logn = _mpfr_ceil_log2 ((double) MPFR_PREC(mylog)); prec_x = prec_i_want + logn; while (!good){ prec = _mpfr_ceil_log2 ((double) prec_x); mpfr_init2(tmp1, prec_x); mpfr_init2(result, prec_x); mpfr_init2(tmp2, prec_x); mpfr_init2(tmp3, prec_x); mpz_set_ui(cst, 1); mpfr_aux_log2(tmp1, cst, 4, prec-2); mpfr_div_2ui(tmp1, tmp1, 4, GMP_RNDD); mpfr_mul_ui(tmp1, tmp1, 15, GMP_RNDD); mpz_set_ui(cst, 3); mpfr_aux_log2(tmp2, cst, 7, prec-2); mpfr_div_2ui(tmp2, tmp2, 7, GMP_RNDD); mpfr_mul_ui(tmp2, tmp2, 5*3, GMP_RNDD); mpfr_sub(result, tmp1, tmp2, GMP_RNDD); mpz_set_ui(cst, 13); mpfr_aux_log2(tmp3, cst, 8, prec-2); mpfr_div_2ui(tmp3, tmp3, 8, GMP_RNDD); mpfr_mul_ui(tmp3, tmp3, 3*13, GMP_RNDD); mpfr_sub(result, result, tmp3, GMP_RNDD); mpfr_clear(tmp1); mpfr_clear(tmp2); mpfr_clear(tmp3); if (mpfr_can_round(result, prec_x, GMP_RNDD, rnd_mode, prec_i_want)){ mpfr_set(mylog, result, rnd_mode); good = 1; } else { prec_x += logn; } mpfr_clear(result); } mpz_clear(cst); return 0; } /* Cross-over point from nai"ve Taylor series to binary splitting, obtained experimentally on a Pentium II. Optimal value for target machine should be determined by tuneup. */ #define LOG2_THRESHOLD 25000 /* set x to log(2) rounded to precision MPFR_PREC(x) with direction rnd_mode use formula log(2) = sum(1/k/2^k, k=1..infinity) whence 2^N*log(2) = S(N) + R(N) where S(N) = sum(2^(N-k)/k, k=1..N-1) and R(N) = sum(1/k/2^(k-N), k=N..infinity) < 2/N Let S'(N) = sum(floor(2^(N-k)/k), k=1..N-1) Then 2^N*log(2)-S'(N) <= N-1+2/N <= N for N>=2. */ void mpfr_const_log2 (mpfr_ptr x, mp_rnd_t rnd_mode) { int N, k, precx; mpz_t s, t, u; precx = MPFR_PREC(x); MPFR_CLEAR_FLAGS(x); /* has stored value enough precision ? */ if (precx <= __mpfr_const_log2_prec) { if ((rnd_mode == __mpfr_const_log2_rnd) || mpfr_can_round (__mpfr_const_log2, __mpfr_const_log2_prec - 1, __mpfr_const_log2_rnd, rnd_mode, precx)) { mpfr_set (x, __mpfr_const_log2, rnd_mode); return; } } /* need to recompute */ if (precx < LOG2_THRESHOLD) /* use nai"ve Taylor series evaluation */ { /* the following was checked by exhaustive search to give a correct result for all 4 rounding modes up to precx = 13500 */ N = precx + 2 * _mpfr_ceil_log2 ((double) precx) + 1; mpz_init (s); /* set to zero */ mpz_init (u); mpz_init_set_ui (t, 1); /* use log(2) = sum((6*k-1)/(2*k^2-k)/2^(2*k+1), k=1..infinity) */ mpz_mul_2exp (t, t, N-1); for (k=1; k<=N/2; k++) { mpz_div_2exp (t, t, 2); mpz_mul_ui (u, t, 6*k-1); mpz_fdiv_q_ui (u, u, k*(2*k-1)); mpz_add (s, s, u); } mpfr_set_z (x, s, rnd_mode); MPFR_EXP(x) -= N; mpz_clear (s); mpz_clear (t); mpz_clear (u); } else /* use binary splitting method */ mpfr_const_aux_log2(x, rnd_mode); /* store computed value */ if (__mpfr_const_log2_prec == 0) mpfr_init2 (__mpfr_const_log2, precx); else mpfr_set_prec (__mpfr_const_log2, precx); mpfr_set (__mpfr_const_log2, x, rnd_mode); __mpfr_const_log2_prec = precx; __mpfr_const_log2_rnd = rnd_mode; }