/* mpfr_const_log2 -- compute natural logarithm of 2 Copyright 1999, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Declare the cache */ MPFR_DECL_INIT_CACHE(__gmpfr_cache_const_log2, mpfr_const_log2_internal); /* Set User interface */ #undef mpfr_const_log2 int mpfr_const_log2 (mpfr_ptr x, mp_rnd_t rnd_mode) { return mpfr_cache (x, __gmpfr_cache_const_log2, rnd_mode); } /* Auxiliary function: Compute the terms from n1 to n2 (excluded) 3/4*sum((-1)^n*n!^2/2^n/(2*n+1)!, n = n1..n2-1). Numerator is T[0], denominator is Q[0], Compute P[0] only when need_P is non-zero. Need 1+ceil(log(n2-n1)/log(2)) cells in T[],P[],Q[]. */ static void S (mpz_t *T, mpz_t *P, mpz_t *Q, unsigned long n1, unsigned long n2, int need_P) { if (n2 == n1 + 1) { if (n1 == 0) mpz_set_ui (P[0], 3); else { mpz_set_ui (P[0], n1); mpz_neg (P[0], P[0]); } if (n1 <= (ULONG_MAX / 4 - 1) / 2) mpz_set_ui (Q[0], 4 * (2 * n1 + 1)); else /* to avoid overflow in 4 * (2 * n1 + 1) */ { mpz_set_ui (Q[0], n1); mpz_mul_2exp (Q[0], Q[0], 1); mpz_add_ui (Q[0], Q[0], 1); mpz_mul_2exp (Q[0], Q[0], 2); } mpz_set (T[0], P[0]); } else { unsigned long m = (n1 / 2) + (n2 / 2) + (n1 & 1UL & n2); unsigned long v, w; S (T, P, Q, n1, m, 1); S (T + 1, P + 1, Q + 1, m, n2, need_P); mpz_mul (T[0], T[0], Q[1]); mpz_mul (T[1], T[1], P[0]); mpz_add (T[0], T[0], T[1]); if (need_P) mpz_mul (P[0], P[0], P[1]); mpz_mul (Q[0], Q[0], Q[1]); /* remove common trailing zeroes if any */ v = mpz_scan1 (T[0], 0); if (v > 0) { w = mpz_scan1 (Q[0], 0); if (w < v) v = w; if (need_P) { w = mpz_scan1 (P[0], 0); if (w < v) v = w; } /* now v = min(val(T), val(Q), val(P)) */ if (v > 0) { mpz_div_2exp (T[0], T[0], v); mpz_div_2exp (Q[0], Q[0], v); if (need_P) mpz_div_2exp (P[0], P[0], v); } } } } /* Don't need to save / restore exponent range: the cache does it */ int mpfr_const_log2_internal (mpfr_ptr x, mp_rnd_t rnd_mode) { unsigned long n = MPFR_PREC (x); mp_prec_t w; /* working precision */ unsigned long N; mpz_t *T, *P, *Q; mpfr_t t, q; int inexact; int ok = 1; /* ensures that the 1st try will give correct rounding */ unsigned long lgN, i; MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("rnd_mode=%d", rnd_mode), ("x[%#R]=%R inex=%d",x,x,inexact)); mpfr_init2 (t, MPFR_PREC_MIN); mpfr_init2 (q, MPFR_PREC_MIN); if (n < 1253) w = n + 10; /* ensures correct rounding for the four rounding modes, together with N = w / 3 + 1 (see below). */ else if (n < 2571) w = n + 11; /* idem */ else if (n < 3983) w = n + 12; else if (n < 4854) w = n + 13; else if (n < 26248) w = n + 14; else { w = n + 15; ok = 0; } MPFR_ZIV_INIT (loop, w); for (;;) { N = w / 3 + 1; /* Warning: do not change that (even increasing N!) without checking correct rounding in the above ranges for n. */ /* the following are needed for error analysis (see algorithms.tex) */ MPFR_ASSERTD(w >= 3 && N >= 2); lgN = MPFR_INT_CEIL_LOG2 (N) + 1; T = (*__gmp_allocate_func) (3 * lgN * sizeof (mpz_t)); P = T + lgN; Q = T + 2*lgN; for (i = 0; i < lgN; i++) { mpz_init (T[i]); mpz_init (P[i]); mpz_init (Q[i]); } S (T, P, Q, 0, N, 0); mpfr_set_prec (t, w); mpfr_set_prec (q, w); mpfr_set_z (t, T[0], GMP_RNDN); mpfr_set_z (q, Q[0], GMP_RNDN); mpfr_div (t, t, q, GMP_RNDN); for (i = 0; i < lgN; i++) { mpz_clear (T[i]); mpz_clear (P[i]); mpz_clear (Q[i]); } (*__gmp_free_func) (T, 3 * lgN * sizeof (mpz_t)); if (MPFR_LIKELY (ok != 0 || mpfr_can_round (t, w - 2, GMP_RNDN, rnd_mode, n))) break; MPFR_ZIV_NEXT (loop, w); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (x, t, rnd_mode); mpfr_clear (t); mpfr_clear (q); return inexact; }