/* mpfr_cos -- cosine of a floating-point number Copyright (C) 2001 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" static int mpfr_cos2_aux _PROTO ((mpfr_ptr, mpfr_srcptr)); int mpfr_cos (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { int K0, K, precy, m, k, l, inexact; mpfr_t r, s; if (MPFR_IS_NAN(x) || MPFR_IS_INF(x)) { MPFR_SET_NAN(y); return 1; } if (!MPFR_NOTZERO(x)) { mpfr_set_ui (y, 1, GMP_RNDN); return 0; } precy = MPFR_PREC(y); K0 = _mpfr_isqrt(precy / 2); /* we need at least K + log2(precy/K) extra bits */ m = precy + 3 * K0 + 3; mpfr_init2 (r, m); mpfr_init2 (s, m); do { mpfr_mul (r, x, x, GMP_RNDU); /* err <= 1 ulp */ /* we need that |r| < 1 for mpfr_cos2_aux, i.e. up(x^2)/2^(2K) < 1 */ K = K0 + MAX(MPFR_EXP(r), 0); mpfr_div_2exp (r, r, 2 * K, GMP_RNDN); /* r = (x/2^K)^2, err <= 1 ulp */ /* s <- 1 - r/2! + ... + (-1)^l r^l/(2l)! */ l = mpfr_cos2_aux (s, r); for (k = 0; k < K; k++) { mpfr_mul (s, s, s, GMP_RNDU); /* err <= 2*olderr */ mpfr_mul_2exp (s, s, 1, GMP_RNDU); /* err <= 4*olderr */ mpfr_sub_ui (s, s, 1, GMP_RNDN); } /* absolute error on s is bounded by (2l+1/3)*2^(2K-m) */ for (k = 2 * K, l = 2 * l + 1; l > 1; k++, l = (l + 1) >> 1); /* now the error is bounded by 2^(k-m) = 2^(EXP(s)-err) */ l = mpfr_can_round (s, MPFR_EXP(s) + m - k, GMP_RNDN, rnd_mode, precy); if (l == 0) { m += BITS_PER_MP_LIMB; mpfr_set_prec (r, m); mpfr_set_prec (s, m); } } while (l == 0); inexact = mpfr_set (y, s, rnd_mode); mpfr_clear (r); mpfr_clear (s); return inexact; } /* s <- 1 - r/2! + r^2/4! + ... + (-1)^l r^l/(2l)! + ... Assumes |r| < 1. Returns the index l0 of the last term (-1)^l r^l/(2l)!. The absolute error on s is at most 2 * l0 * 2^(-m). */ static int mpfr_cos2_aux (mpfr_ptr s, mpfr_srcptr r) { unsigned int l, b = 2; long int prec_t, m = MPFR_PREC(s); mpfr_t t; MPFR_ASSERTN (MPFR_EXP(r) <= 0); mpfr_init2 (t, m); mpfr_set_ui (t, 1, GMP_RNDN); mpfr_set_ui(s, 1, GMP_RNDN); for (l = 1; MPFR_EXP(t) + m >= 0; l++) { mpfr_mul (t, t, r, GMP_RNDU); /* err <= (3l-1) ulp */ mpfr_div_ui (t, t, (2*l-1)*(2*l), GMP_RNDU); /* err <= 3l ulp */ if (l % 2 == 0) mpfr_add (s, s, t, GMP_RNDD); else mpfr_sub (s, s, t, GMP_RNDD); MPFR_ASSERTN (MPFR_EXP(s) == 0); /* check 1/2 <= s < 1 */ /* err(s) <= l * 2^(-m) */ if (3 * l > (1 << b)) b++; /* now 3l <= 2^b, we want 3l*ulp(t) <= 2^(-m) i.e. b+EXP(t)-PREC(t) <= -m */ prec_t = m + MPFR_EXP(t) + b; if (prec_t >= MPFR_PREC_MIN) mpfr_round (t, GMP_RNDN, prec_t); } mpfr_clear (t); return l; }