/* mpfr_erfc -- The Complementary Error Function of a floating-point number Copyright 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LIB. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* erfc(x) = 1 - erf(x) */ /* Put in y an approximation of erfc(x) for large x, using formulae 7.1.23 and 7.1.24 from Abramowitz and Stegun. Returns e such that the error is bounded by 2^e ulp(y), or returns 0 in case of underflow. */ static mp_exp_t mpfr_erfc_asympt (mpfr_ptr y, mpfr_srcptr x) { mpfr_t t, xx, err; unsigned long k; mp_prec_t prec = MPFR_PREC(y); mp_exp_t exp_err; mpfr_init2 (t, prec); mpfr_init2 (xx, prec); mpfr_init2 (err, 31); /* let u = 2^(1-p), and let us represent the error as (1+u)^err with a bound for err */ mpfr_mul (xx, x, x, MPFR_RNDD); /* err <= 1 */ mpfr_ui_div (xx, 1, xx, MPFR_RNDU); /* upper bound for 1/(2x^2), err <= 2 */ mpfr_div_2ui (xx, xx, 1, MPFR_RNDU); /* exact */ mpfr_set_ui (t, 1, MPFR_RNDN); /* current term, exact */ mpfr_set (y, t, MPFR_RNDN); /* current sum */ mpfr_set_ui (err, 0, MPFR_RNDN); for (k = 1; ; k++) { mpfr_mul_ui (t, t, 2 * k - 1, MPFR_RNDU); /* err <= 4k-3 */ mpfr_mul (t, t, xx, MPFR_RNDU); /* err <= 4k */ /* for -1 < x < 1, and |nx| < 1, we have |(1+x)^n| <= 1+7/4|nx|. Indeed, for x>=0: log((1+x)^n) = n*log(1+x) <= n*x. Let y=n*x < 1, then exp(y) <= 1+7/4*y. For x<=0, let x=-x, we can prove by induction that (1-x)^n >= 1-n*x.*/ mpfr_mul_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU); mpfr_add_ui (err, err, 14 * k, MPFR_RNDU); /* 2^(1-p) * t <= 2 ulp(t) */ mpfr_div_2si (err, err, MPFR_GET_EXP (y) - MPFR_GET_EXP (t), MPFR_RNDU); if (MPFR_GET_EXP (t) + (mp_exp_t) prec <= MPFR_GET_EXP (y)) { /* the truncation error is bounded by |t| < ulp(y) */ mpfr_add_ui (err, err, 1, MPFR_RNDU); break; } if (k & 1) mpfr_sub (y, y, t, MPFR_RNDN); else mpfr_add (y, y, t, MPFR_RNDN); } /* the error on y is bounded by err*ulp(y) */ mpfr_mul (t, x, x, MPFR_RNDU); /* rel. err <= 2^(1-p) */ mpfr_div_2ui (err, err, 3, MPFR_RNDU); /* err/8 */ mpfr_add (err, err, t, MPFR_RNDU); /* err/8 + xx */ mpfr_mul_2ui (err, err, 3, MPFR_RNDU); /* err + 8*xx */ mpfr_exp (t, t, MPFR_RNDU); /* err <= 1/2*ulp(t) + err(x*x)*t <= 1/2*ulp(t)+2*|x*x|*ulp(t) <= (2*|x*x|+1/2)*ulp(t) */ mpfr_mul (t, t, x, MPFR_RNDN); /* err <= 1/2*ulp(t) + (4*|x*x|+1)*ulp(t) <= (4*|x*x|+3/2)*ulp(t) */ mpfr_const_pi (xx, MPFR_RNDZ); /* err <= ulp(Pi) */ mpfr_sqrt (xx, xx, MPFR_RNDN); /* err <= 1/2*ulp(xx) + ulp(Pi)/2/sqrt(Pi) <= 3/2*ulp(xx) */ mpfr_mul (t, t, xx, MPFR_RNDN); /* err <= (8 |xx| + 13/2) * ulp(t) */ mpfr_div (y, y, t, MPFR_RNDN); /* the relative error on input y is bounded by (1+u)^err with u = 2^(1-p), that on t is bounded by (1+u)^(8 |xx| + 13/2), thus that on output y is bounded by 8 |xx| + 7 + err. */ if (MPFR_IS_ZERO(y)) { /* If y is zero, most probably we have underflow. We check it directly using the fact that erfc(x) <= exp(-x^2)/sqrt(Pi)/x for x >= 0. We compute an upper approximation of exp(-x^2)/sqrt(Pi)/x. */ mpfr_mul (t, x, x, MPFR_RNDD); /* t <= x^2 */ mpfr_neg (t, t, MPFR_RNDU); /* -x^2 <= t */ mpfr_exp (t, t, MPFR_RNDU); /* exp(-x^2) <= t */ mpfr_const_pi (xx, MPFR_RNDD); /* xx <= sqrt(Pi), cached */ mpfr_mul (xx, xx, x, MPFR_RNDD); /* xx <= sqrt(Pi)*x */ mpfr_div (y, t, xx, MPFR_RNDN); /* if y is zero, this means that the upper approximation of exp(-x^2)/sqrt(Pi)/x is nearer from 0 than from 2^(-emin-1), thus we have underflow. */ exp_err = 0; } else { mpfr_add_ui (err, err, 7, MPFR_RNDU); exp_err = MPFR_GET_EXP (err); } mpfr_clear (t); mpfr_clear (xx); mpfr_clear (err); return exp_err; } int mpfr_erfc (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd) { int inex; mpfr_t tmp; mp_exp_t te, err; mp_prec_t prec; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd), ("y[%#R]=%R inexact=%d", y, y, inex)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } /* erfc(+inf) = 0+, erfc(-inf) = 2 erfc (0) = 1 */ else if (MPFR_IS_INF (x)) return mpfr_set_ui (y, MPFR_IS_POS (x) ? 0 : 2, rnd); else return mpfr_set_ui (y, 1, rnd); } if (MPFR_SIGN (x) > 0) { /* for x >= 27282, erfc(x) < 2^(-2^30-1) */ if (mpfr_cmp_ui (x, 27282) >= 0) return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1); } if (MPFR_SIGN (x) < 0) { mp_exp_t e = MPFR_EXP(x); /* For x < 0 going to -infinity, erfc(x) tends to 2 by below. More precisely, we have 2 + 1/sqrt(Pi)/x/exp(x^2) < erfc(x) < 2. Thus log2 |2 - erfc(x)| <= -log2|x| - x^2 / log(2). If |2 - erfc(x)| < 2^(-PREC(y)) then the result is either 2 or nextbelow(2). For x <= -27282, -log2|x| - x^2 / log(2) <= -2^30. */ if ((MPFR_PREC(y) <= 7 && e >= 2) || /* x <= -2 */ (MPFR_PREC(y) <= 25 && e >= 3) || /* x <= -4 */ (MPFR_PREC(y) <= 120 && mpfr_cmp_si (x, -9) <= 0) || mpfr_cmp_si (x, -27282) <= 0) { near_two: mpfr_set_ui (y, 2, MPFR_RNDN); mpfr_set_inexflag (); if (rnd == MPFR_RNDZ || rnd == MPFR_RNDD) { mpfr_nextbelow (y); return -1; } else return 1; } else if (e >= 3) /* more accurate test */ { mpfr_t t, u; int near_2; mpfr_init2 (t, 32); mpfr_init2 (u, 32); /* the following is 1/log(2) rounded to zero on 32 bits */ mpfr_set_str_binary (t, "1.0111000101010100011101100101001"); mpfr_sqr (u, x, MPFR_RNDZ); mpfr_mul (t, t, u, MPFR_RNDZ); /* t <= x^2/log(2) */ mpfr_neg (u, x, MPFR_RNDZ); /* 0 <= u <= |x| */ mpfr_log2 (u, u, MPFR_RNDZ); /* u <= log2(|x|) */ mpfr_add (t, t, u, MPFR_RNDZ); /* t <= log2|x| + x^2 / log(2) */ near_2 = mpfr_cmp_ui (t, MPFR_PREC(y)) >= 0; mpfr_clear (t); mpfr_clear (u); if (near_2) goto near_two; } } /* Init stuff */ MPFR_SAVE_EXPO_MARK (expo); /* erfc(x) ~ 1, with error < 2^(EXP(x)+1) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, __gmpfr_one, - MPFR_GET_EXP (x) - 1, 0, MPFR_SIGN(x) < 0, rnd, inex = _inexact; goto end); prec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (y)) + 3; if (MPFR_GET_EXP (x) > 0) prec += 2 * MPFR_GET_EXP(x); mpfr_init2 (tmp, prec); MPFR_ZIV_INIT (loop, prec); /* Initialize the ZivLoop controler */ for (;;) /* Infinite loop */ { /* use asymptotic formula only whenever x^2 >= p*log(2), otherwise it will not converge */ if (MPFR_SIGN (x) > 0 && 2 * MPFR_GET_EXP (x) - 2 >= MPFR_INT_CEIL_LOG2 (prec)) /* we have x^2 >= p in that case */ { err = mpfr_erfc_asympt (tmp, x); if (err == 0) /* underflow case */ { mpfr_clear (tmp); MPFR_SAVE_EXPO_FREE (expo); return mpfr_underflow (y, (rnd == MPFR_RNDN) ? MPFR_RNDZ : rnd, 1); } } else { mpfr_erf (tmp, x, MPFR_RNDN); MPFR_ASSERTD (!MPFR_IS_SINGULAR (tmp)); /* FIXME: 0 only for x=0 ? */ te = MPFR_GET_EXP (tmp); mpfr_ui_sub (tmp, 1, tmp, MPFR_RNDN); /* See error analysis in algorithms.tex for details */ if (MPFR_IS_ZERO (tmp)) { prec *= 2; err = prec; /* ensures MPFR_CAN_ROUND fails */ } else err = MAX (te - MPFR_GET_EXP (tmp), 0) + 1; } if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp, prec - err, MPFR_PREC (y), rnd))) break; MPFR_ZIV_NEXT (loop, prec); /* Increase used precision */ mpfr_set_prec (tmp, prec); } MPFR_ZIV_FREE (loop); /* Free the ZivLoop Controler */ inex = mpfr_set (y, tmp, rnd); /* Set y to the computed value */ mpfr_clear (tmp); end: MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inex, rnd); }