/* mpfr_exp2 -- power of 2 function 2^y Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of y = 2^z is done by * * y = exp(z*log(2)). The result is exact iff z is an integer. */ int mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { int inexact; MPFR_SAVE_EXPO_DECL (expo); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) { if (MPFR_IS_NAN (x)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (x)) { if (MPFR_IS_POS (x)) MPFR_SET_INF (y); else MPFR_SET_ZERO (y); MPFR_SET_POS (y); MPFR_RET (0); } else /* 2^0 = 1 */ { MPFR_ASSERTD (MPFR_IS_ZERO(x)); return mpfr_set_ui (y, 1, rnd_mode); } } /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin, if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */ MPFR_ASSERTD (MPFR_EMIN_MIN - 2 >= LONG_MIN); if (mpfr_cmp_si_2exp (x, __gmpfr_emin - 1, 0) < 0) { mp_rnd_t rnd2 = rnd_mode; /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */ if (rnd_mode == GMP_RNDN && mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0) rnd2 = GMP_RNDZ; return mpfr_underflow (y, rnd2, 1); } if (mpfr_integer_p (x)) /* we know that x >= 2^(emin-1) */ { long xd; MPFR_ASSERTD (MPFR_EMAX_MAX <= LONG_MAX); if (mpfr_cmp_si_2exp (x, __gmpfr_emax, 0) > 0) return mpfr_overflow (y, rnd_mode, 1); xd = mpfr_get_si (x, GMP_RNDN); mpfr_set_ui (y, 1, GMP_RNDZ); return mpfr_mul_2si (y, y, xd, rnd_mode); } MPFR_SAVE_EXPO_MARK (expo); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t; /* Declaration of the size variable */ mp_prec_t Ny = MPFR_PREC(y); /* target precision */ mp_prec_t Nt; /* working precision */ mp_exp_t err; /* error */ MPFR_ZIV_DECL (loop); /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny); /* initialise of intermediary variable */ mpfr_init2 (t, Nt); /* First computation */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute exp(x*ln(2))*/ mpfr_const_log2 (t, GMP_RNDU); /* ln(2) */ mpfr_mul (t, x, t, GMP_RNDU); /* x*ln(2) */ err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */ mpfr_exp (t, t, GMP_RNDN); /* exp(x*ln(2))*/ if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; /* Actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (y, t, rnd_mode); mpfr_clear (t); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (y, inexact, rnd_mode); }