/* mpfr_exp2 -- power of 2 function 2^y Copyright 2001, 2002, 2003 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" /* The computation of y = 2^z is done by y = exp(z*log(2)). The result is exact iff z is an integer. */ int mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { int inexact; if (MPFR_IS_NAN(x)) { MPFR_SET_NAN(y); MPFR_RET_NAN; } MPFR_CLEAR_NAN(y); if (MPFR_IS_INF(x)) { if (MPFR_SIGN(x) > 0) { MPFR_SET_INF(y); } else { MPFR_CLEAR_INF(y); MPFR_SET_ZERO(y); } MPFR_SET_POS(y); MPFR_RET(0); } /* 2^0 = 1 */ if (MPFR_IS_ZERO(x)) return mpfr_set_ui (y, 1, rnd_mode); /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin, if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */ MPFR_ASSERTN(MPFR_EMIN_MIN - 2 >= LONG_MIN); if (mpfr_cmp_si_2exp (x, __gmpfr_emin - 1, 0) < 0) { mp_rnd_t rnd2 = rnd_mode; /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */ if (rnd_mode == GMP_RNDN && mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0) rnd2 = GMP_RNDZ; return mpfr_set_underflow (y, rnd2, 1); } if (mpfr_isinteger (x)) /* we know that x >= 2^(emin-1) */ { double xd; MPFR_ASSERTN(MPFR_EMAX_MAX <= LONG_MAX); if (mpfr_cmp_si_2exp (x, __gmpfr_emax, 0) > 0) return mpfr_set_overflow (y, rnd_mode, 1); xd = mpfr_get_d1 (x); mpfr_set_ui (y, 1, GMP_RNDZ); return mpfr_mul_2si (y, y, (long) xd, rnd_mode); } /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, te; /* Declaration of the size variable */ mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */ mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ long int err; /* Precision of error */ /* compute the precision of intermediary variable */ Nt = MAX(Nx, Ny); /* the optimal number of bits : see algorithms.ps */ Nt = Nt + 5 + __gmpfr_ceil_log2 (Nt); /* initialise of intermediary variable */ mpfr_init (t); mpfr_init (te); /* First computation */ do { /* reactualisation of the precision */ mpfr_set_prec (t, Nt); mpfr_set_prec (te, Nt); /* compute exp(x*ln(2))*/ mpfr_const_log2 (t, GMP_RNDU); /* ln(2) */ mpfr_mul (te, x, t, GMP_RNDU); /* x*ln(2) */ mpfr_exp (t, te, GMP_RNDN); /* exp(x*ln(2))*/ /* estimate of the error -- see pow function in algorithms.ps*/ err = Nt - (MPFR_EXP(te) + 2); /* actualisation of the precision */ Nt += __gmpfr_isqrt (Nt) + 10; } while ((err < 0) || !mpfr_can_round (t, err, GMP_RNDN, rnd_mode, Ny)); inexact = mpfr_set (y, t, rnd_mode); mpfr_clear (t); mpfr_clear (te); } return inexact; }