/* mpfr_exp -- exponential of a floating-point number Copyright 1999, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H /* for MPFR_MPZ_SIZEINBASE2 */ #include "mpfr-impl.h" /* y <- exp(p/2^r) within 1 ulp, using 2^m terms from the series Assume |p/2^r| < 1. We use the following binary splitting formula: P(a,b) = p if a+1=b, P(a,c)*P(c,b) otherwise Q(a,b) = a*2^r if a+1=b [except Q(0,1)=1], Q(a,c)*Q(c,b) otherwise T(a,b) = P(a,b) if a+1=b, Q(c,b)*T(a,c)+P(a,c)*T(c,b) otherwise Then exp(p/2^r) ~ T(0,i)/Q(0,i) for i so that (p/2^r)^i/i! is small enough. Since P(a,b) = p^(b-a), and we consider only values of b-a of the form 2^j, we don't need to compute P(), we only precompute p^(2^j) in the ptoj[] array below. Since Q(a,b) is divisible by 2^(r*(b-a-1)), we don't compute the power of two part. */ static void mpfr_exp_rational (mpfr_ptr y, mpz_ptr p, long r, int m, mpz_t *Q, mp_prec_t *mult) { unsigned long n, i, j; mpz_t *S, *ptoj; mp_prec_t *log2_nb_terms; mp_exp_t diff, expo; mp_prec_t precy = MPFR_PREC(y), prec_i_have, prec_ptoj; int k, l; MPFR_ASSERTN ((size_t) m < sizeof (long) * CHAR_BIT - 1); S = Q + (m+1); ptoj = Q + 2*(m+1); /* ptoj[i] = mantissa^(2^i) */ log2_nb_terms = mult + (m+1); /* Normalize p */ MPFR_ASSERTD (mpz_cmp_ui (p, 0) != 0); n = mpz_scan1 (p, 0); /* number of trailing zeros in p */ mpz_tdiv_q_2exp (p, p, n); r -= n; /* since |p/2^r| < 1 and p >= 1, r >= 1 */ /* Set initial var */ mpz_set (ptoj[0], p); for (k = 1; k < m; k++) mpz_mul (ptoj[k], ptoj[k-1], ptoj[k-1]); /* ptoj[k] = p^(2^k) */ mpz_set_ui (Q[0], 1); mpz_set_ui (S[0], 1); k = 0; mult[0] = 0; /* the multiplier P[k]/Q[k] for the remaining terms satisfies P[k]/Q[k] <= 2^(-mult[k]) */ log2_nb_terms[0] = 0; /* log2(#terms) [exact in 1st loop where 2^k] */ prec_i_have = 0; /* Main Loop */ n = 1UL << m; for (i = 1; (prec_i_have < precy) && (i < n); i++) { /* invariant: Q[0]*Q[1]*...*Q[k] equals i! */ k++; log2_nb_terms[k] = 0; /* 1 term */ mpz_set_ui (Q[k], i + 1); mpz_set_ui (S[k], i + 1); j = i + 1; /* we have computed j = i+1 terms so far */ l = 0; while ((j & 1) == 0) /* combine and reduce */ { /* invariant: S[k] corresponds to 2^l consecutive terms */ mpz_mul (S[k], S[k], ptoj[l]); mpz_mul (S[k-1], S[k-1], Q[k]); /* Q[k] corresponds to 2^l consecutive terms too. Since it does not contains the factor 2^(r*2^l), when going from l to l+1 we need to multiply by 2^(r*2^(l+1))/2^(r*2^l) = 2^(r*2^l) */ mpz_mul_2exp (S[k-1], S[k-1], r << l); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); log2_nb_terms[k-1] ++; /* number of terms in S[k-1] is a power of 2 by construction */ MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[k]); MPFR_MPZ_SIZEINBASE2 (prec_ptoj, ptoj[l]); mult[k-1] += prec_i_have + (r << l) - prec_ptoj - 1; prec_i_have = mult[k] = mult[k-1]; /* since mult[k] >= mult[k-1] + nbits(Q[k]), we have Q[0]*...*Q[k] <= 2^mult[k] = 2^prec_i_have */ l ++; j >>= 1; k --; } } /* accumulate all products in S[0] and Q[0]. Warning: contrary to above, here we do not have log2_nb_terms[k-1] = log2_nb_terms[k]+1. */ l = 0; /* number of accumulated terms in the right part S[k]/Q[k] */ while (k > 0) { j = log2_nb_terms[k-1]; mpz_mul (S[k], S[k], ptoj[j]); mpz_mul (S[k-1], S[k-1], Q[k]); l += 1 << log2_nb_terms[k]; mpz_mul_2exp (S[k-1], S[k-1], r * l); mpz_add (S[k-1], S[k-1], S[k]); mpz_mul (Q[k-1], Q[k-1], Q[k]); k--; } /* Q[0] now equals i! */ MPFR_MPZ_SIZEINBASE2 (prec_i_have, S[0]); diff = (mp_exp_t) prec_i_have - 2 * (mp_exp_t) precy; expo = diff; if (diff >= 0) mpz_div_2exp (S[0], S[0], diff); else mpz_mul_2exp (S[0], S[0], -diff); MPFR_MPZ_SIZEINBASE2 (prec_i_have, Q[0]); diff = (mp_exp_t) prec_i_have - (mp_prec_t) precy; expo -= diff; if (diff > 0) mpz_div_2exp (Q[0], Q[0], diff); else mpz_mul_2exp (Q[0], Q[0], -diff); mpz_tdiv_q (S[0], S[0], Q[0]); mpfr_set_z (y, S[0], GMP_RNDD); MPFR_SET_EXP (y, MPFR_GET_EXP (y) + expo - r * (i - 1) ); } #define shift (BITS_PER_MP_LIMB/2) int mpfr_exp_3 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode) { mpfr_t t, x_copy, tmp; mpz_t uk; mp_exp_t ttt, shift_x; unsigned long twopoweri; mpz_t *P; mp_prec_t *mult; int i, k, loop; int prec_x; mp_prec_t realprec, Prec; int iter; int inexact = 0; MPFR_SAVE_EXPO_DECL (expo); MPFR_ZIV_DECL (ziv_loop); MPFR_SAVE_EXPO_MARK (expo); /* decompose x */ /* we first write x = 1.xxxxxxxxxxxxx ----- k bits -- */ prec_x = MPFR_INT_CEIL_LOG2 (MPFR_PREC (x)) - MPFR_LOG2_BITS_PER_MP_LIMB; if (prec_x < 0) prec_x = 0; ttt = MPFR_GET_EXP (x); mpfr_init2 (x_copy, MPFR_PREC(x)); mpfr_set (x_copy, x, GMP_RNDD); /* we shift to get a number less than 1 */ if (ttt > 0) { shift_x = ttt; mpfr_div_2ui (x_copy, x, ttt, GMP_RNDN); ttt = MPFR_GET_EXP (x_copy); } else shift_x = 0; MPFR_ASSERTD (ttt <= 0); /* Init prec and vars */ realprec = MPFR_PREC (y) + MPFR_INT_CEIL_LOG2 (prec_x + MPFR_PREC (y)); Prec = realprec + shift + 2 + shift_x; mpfr_init2 (t, Prec); mpfr_init2 (tmp, Prec); mpz_init (uk); /* Main loop */ MPFR_ZIV_INIT (ziv_loop, realprec); for (;;) { MPFR_BLOCK_DECL (flags); k = MPFR_INT_CEIL_LOG2 (Prec) - MPFR_LOG2_BITS_PER_MP_LIMB; /* now we have to extract */ twopoweri = BITS_PER_MP_LIMB; /* Allocate tables */ P = (mpz_t*) (*__gmp_allocate_func) (3*(k+2)*sizeof(mpz_t)); for (i = 0; i < 3*(k+2); i++) mpz_init (P[i]); mult = (mp_prec_t*) (*__gmp_allocate_func) (2*(k+2)*sizeof(mp_prec_t)); /* Particular case for i==0 */ mpfr_extract (uk, x_copy, 0); MPFR_ASSERTD (mpz_cmp_ui (uk, 0) != 0); mpfr_exp_rational (tmp, uk, shift + twopoweri - ttt, k + 1, P, mult); for (loop = 0; loop < shift; loop++) mpfr_sqr (tmp, tmp, GMP_RNDD); twopoweri *= 2; /* General case */ iter = (k <= prec_x) ? k : prec_x; for (i = 1; i <= iter; i++) { mpfr_extract (uk, x_copy, i); if (MPFR_LIKELY (mpz_cmp_ui (uk, 0) != 0)) { mpfr_exp_rational (t, uk, twopoweri - ttt, k - i + 1, P, mult); mpfr_mul (tmp, tmp, t, GMP_RNDD); } MPFR_ASSERTN (twopoweri <= LONG_MAX/2); twopoweri *=2; } /* Clear tables */ for (i = 0; i < 3*(k+2); i++) mpz_clear (P[i]); (*__gmp_free_func) (P, 3*(k+2)*sizeof(mpz_t)); (*__gmp_free_func) (mult, 2*(k+2)*sizeof(mp_prec_t)); MPFR_BLOCK (flags, for (loop = 0; loop < shift_x; loop++) mpfr_mul (tmp, tmp, tmp, GMP_RNDD)); if (MPFR_OVERFLOW (flags)) { /* We hack to set a FP number outside the valid range so that mpfr_check_range properly generates an overflow */ mpfr_setmax (y, __gmpfr_emax); MPFR_EXP (y) ++; inexact = 1; break; } else if (MPFR_UNDERFLOW (flags)) { inexact = mpfr_underflow (y, rnd_mode, 1); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_INEXACT | MPFR_FLAGS_UNDERFLOW); break; } else if (mpfr_can_round (tmp, realprec, GMP_RNDD, GMP_RNDZ, MPFR_PREC(y) + (rnd_mode == GMP_RNDN))) { inexact = mpfr_set (y, tmp, rnd_mode); break; } MPFR_ZIV_NEXT (ziv_loop, realprec); Prec = realprec + shift + 2 + shift_x; mpfr_set_prec (t, Prec); mpfr_set_prec (tmp, Prec); } MPFR_ZIV_FREE (ziv_loop); mpz_clear (uk); mpfr_clear (tmp); mpfr_clear (t); mpfr_clear (x_copy); MPFR_SAVE_EXPO_FREE (expo); return inexact; }