/* mpfr_exp_2 -- exponential of a floating-point number using algorithms in O(n^(1/2)*M(n)) and O(n^(1/3)*M(n)) Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. Contributed by the Arenaire and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ /* #define DEBUG */ #define MPFR_NEED_LONGLONG_H /* for count_leading_zeros */ #include "mpfr-impl.h" static unsigned long mpfr_exp2_aux (mpz_t, mpfr_srcptr, mpfr_prec_t, mpfr_exp_t *); static unsigned long mpfr_exp2_aux2 (mpz_t, mpfr_srcptr, mpfr_prec_t, mpfr_exp_t *); static mpfr_exp_t mpz_normalize (mpz_t, mpz_t, mpfr_exp_t); static mpfr_exp_t mpz_normalize2 (mpz_t, mpz_t, mpfr_exp_t, mpfr_exp_t); /* if k = the number of bits of z > q, divides z by 2^(k-q) and returns k-q. Otherwise do nothing and return 0. */ static mpfr_exp_t mpz_normalize (mpz_t rop, mpz_t z, mpfr_exp_t q) { size_t k; MPFR_MPZ_SIZEINBASE2 (k, z); MPFR_ASSERTD (k == (mpfr_uexp_t) k); if (q < 0 || (mpfr_uexp_t) k > (mpfr_uexp_t) q) { mpz_fdiv_q_2exp (rop, z, (unsigned long) ((mpfr_uexp_t) k - q)); return (mpfr_exp_t) k - q; } if (MPFR_UNLIKELY(rop != z)) mpz_set (rop, z); return 0; } /* if expz > target, shift z by (expz-target) bits to the left. if expz < target, shift z by (target-expz) bits to the right. Returns target. */ static mpfr_exp_t mpz_normalize2 (mpz_t rop, mpz_t z, mpfr_exp_t expz, mpfr_exp_t target) { if (target > expz) mpz_fdiv_q_2exp (rop, z, target - expz); else mpz_mul_2exp (rop, z, expz - target); return target; } /* use Brent's formula exp(x) = (1+r+r^2/2!+r^3/3!+...)^(2^K)*2^n where x = n*log(2)+(2^K)*r together with the Paterson-Stockmeyer O(t^(1/2)) algorithm for the evaluation of power series. The resulting complexity is O(n^(1/3)*M(n)). This function returns with the exact flags due to exp. */ int mpfr_exp_2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) { long n; unsigned long K, k, l, err; /* FIXME: Which type ? */ int error_r; mpfr_exp_t exps, expx; mpfr_prec_t q, precy; int inexact; mpfr_t r, s; mpz_t ss; MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode), ("y[%#R]=%R inexact=%d", y, y, inexact)); expx = MPFR_GET_EXP (x); precy = MPFR_PREC(y); /* Warning: we cannot use the 'double' type here, since on 64-bit machines x may be as large as 2^62*log(2) without overflow, and then x/log(2) is about 2^62: not every integer of that size can be represented as a 'double', thus the argument reduction would fail. */ if (expx <= -2) /* |x| <= 0.25, thus n = round(x/log(2)) = 0 */ n = 0; else { mpfr_init2 (r, sizeof (long) * CHAR_BIT); mpfr_const_log2 (r, MPFR_RNDZ); mpfr_div (r, x, r, MPFR_RNDN); n = mpfr_get_si (r, MPFR_RNDN); mpfr_clear (r); } /* we have |x| <= (|n|+1)*log(2) */ MPFR_LOG_MSG (("d(x)=%1.30e n=%ld\n", mpfr_get_d1(x), n)); /* error_r bounds the cancelled bits in x - n*log(2) */ if (MPFR_UNLIKELY (n == 0)) error_r = 0; else { count_leading_zeros (error_r, (mp_limb_t) SAFE_ABS (unsigned long, n) + 1); error_r = GMP_NUMB_BITS - error_r; /* we have |x| <= 2^error_r * log(2) */ } /* for the O(n^(1/2)*M(n)) method, the Taylor series computation of n/K terms costs about n/(2K) multiplications when computed in fixed point */ K = (precy < MPFR_EXP_2_THRESHOLD) ? __gmpfr_isqrt ((precy + 1) / 2) : __gmpfr_cuberoot (4*precy); l = (precy - 1) / K + 1; err = K + MPFR_INT_CEIL_LOG2 (2 * l + 18); /* add K extra bits, i.e. failure probability <= 1/2^K = O(1/precy) */ q = precy + err + K + 8; /* if |x| >> 1, take into account the cancelled bits */ if (expx > 0) q += expx; /* Note: due to the mpfr_prec_round below, it is not possible to use the MPFR_GROUP_* macros here. */ mpfr_init2 (r, q + error_r); mpfr_init2 (s, q + error_r); /* the algorithm consists in computing an upper bound of exp(x) using a precision of q bits, and see if we can round to MPFR_PREC(y) taking into account the maximal error. Otherwise we increase q. */ MPFR_ZIV_INIT (loop, q); for (;;) { MPFR_LOG_MSG (("n=%ld K=%lu l=%lu q=%lu error_r=%d\n", n, K, l, (unsigned long) q, error_r)); /* First reduce the argument to r = x - n * log(2), so that r is small in absolute value. We want an upper bound on r to get an upper bound on exp(x). */ /* if n<0, we have to get an upper bound of log(2) in order to get an upper bound of r = x-n*log(2) */ mpfr_const_log2 (s, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU); /* s is within 1 ulp(s) of log(2) */ mpfr_mul_ui (r, s, (n < 0) ? -n : n, (n >= 0) ? MPFR_RNDZ : MPFR_RNDU); /* r is within 3 ulps of |n|*log(2) */ if (n < 0) MPFR_CHANGE_SIGN (r); /* r <= n*log(2), within 3 ulps */ MPFR_LOG_VAR (x); MPFR_LOG_VAR (r); mpfr_sub (r, x, r, MPFR_RNDU); if (MPFR_IS_PURE_FP (r)) { while (MPFR_IS_NEG (r)) { /* initial approximation n was too large */ n--; mpfr_add (r, r, s, MPFR_RNDU); } /* since there was a cancellation in x - n*log(2), the low error_r bits from r are zero and thus non significant, thus we can reduce the working precision */ if (error_r > 0) mpfr_prec_round (r, q, MPFR_RNDU); /* the error on r is at most 3 ulps (3 ulps if error_r = 0, and 1 + 3/2 if error_r > 0) */ MPFR_LOG_VAR (r); MPFR_ASSERTD (MPFR_IS_POS (r)); mpfr_div_2ui (r, r, K, MPFR_RNDU); /* r = (x-n*log(2))/2^K, exact */ mpz_init (ss); exps = mpfr_get_z_2exp (ss, s); /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! */ MPFR_ASSERTD (MPFR_IS_PURE_FP (r) && MPFR_EXP (r) < 0); l = (precy < MPFR_EXP_2_THRESHOLD) ? mpfr_exp2_aux (ss, r, q, &exps) /* naive method */ : mpfr_exp2_aux2 (ss, r, q, &exps); /* Paterson/Stockmeyer meth */ MPFR_LOG_MSG (("l=%lu q=%lu (K+l)*q^2=%1.3e\n", l, (unsigned long) q, (K + l) * (double) q * q)); for (k = 0; k < K; k++) { mpz_mul (ss, ss, ss); exps <<= 1; exps += mpz_normalize (ss, ss, q); } mpfr_set_z (s, ss, MPFR_RNDN); MPFR_SET_EXP(s, MPFR_GET_EXP (s) + exps); mpz_clear (ss); /* error is at most 2^K*l, plus 2 to take into account of the error of 3 ulps on r */ err = K + MPFR_INT_CEIL_LOG2 (l) + 2; MPFR_LOG_MSG (("before mult. by 2^n:\n", 0)); MPFR_LOG_VAR (s); MPFR_LOG_MSG (("err=%lu bits\n", K)); if (MPFR_LIKELY (MPFR_CAN_ROUND (s, q - err, precy, rnd_mode))) { mpfr_clear_flags (); inexact = mpfr_mul_2si (y, s, n, rnd_mode); break; } } MPFR_ZIV_NEXT (loop, q); mpfr_set_prec (r, q + error_r); mpfr_set_prec (s, q + error_r); } MPFR_ZIV_FREE (loop); mpfr_clear (r); mpfr_clear (s); return inexact; } /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q using naive method with O(l) multiplications. Return the number of iterations l. The absolute error on s is less than 3*l*(l+1)*2^(-q). Version using fixed-point arithmetic with mpz instead of mpfr for internal computations. s must have at least qn+1 limbs (qn should be enough, but currently fails since mpz_mul_2exp(s, s, q-1) reallocates qn+1 limbs) */ static unsigned long mpfr_exp2_aux (mpz_t s, mpfr_srcptr r, mpfr_prec_t q, mpfr_exp_t *exps) { unsigned long l; mpfr_exp_t dif, expt, expr; mp_size_t qn; mpz_t t, rr; mp_size_t sbit, tbit; MPFR_ASSERTN (MPFR_IS_PURE_FP (r)); qn = 1 + (q-1)/GMP_NUMB_BITS; expt = 0; *exps = 1 - (mpfr_exp_t) q; /* s = 2^(q-1) */ mpz_init (t); mpz_init (rr); mpz_set_ui(t, 1); mpz_set_ui(s, 1); mpz_mul_2exp(s, s, q-1); expr = mpfr_get_z_2exp(rr, r); /* no error here */ l = 0; for (;;) { l++; mpz_mul(t, t, rr); expt += expr; MPFR_MPZ_SIZEINBASE2 (sbit, s); MPFR_MPZ_SIZEINBASE2 (tbit, t); dif = *exps + sbit - expt - tbit; /* truncates the bits of t which are < ulp(s) = 2^(1-q) */ expt += mpz_normalize(t, t, (mpfr_exp_t) q-dif); /* error at most 2^(1-q) */ mpz_fdiv_q_ui (t, t, l); /* error at most 2^(1-q) */ /* the error wrt t^l/l! is here at most 3*l*ulp(s) */ MPFR_ASSERTD (expt == *exps); if (mpz_sgn (t) == 0) break; mpz_add(s, s, t); /* no error here: exact */ /* ensures rr has the same size as t: after several shifts, the error on rr is still at most ulp(t)=ulp(s) */ MPFR_MPZ_SIZEINBASE2 (tbit, t); expr += mpz_normalize(rr, rr, tbit); } mpz_clear (t); mpz_clear (rr); return 3 * l * (l + 1); } /* s <- 1 + r/1! + r^2/2! + ... + r^l/l! while MPFR_EXP(r^l/l!)+MPFR_EXPR(r)>-q using Paterson-Stockmeyer algorithm with O(sqrt(l)) multiplications. Return l. Uses m multiplications of full size and 2l/m of decreasing size, i.e. a total equivalent to about m+l/m full multiplications, i.e. 2*sqrt(l) for m=sqrt(l). Version using mpz. ss must have at least (sizer+1) limbs. The error is bounded by (l^2+4*l) ulps where l is the return value. */ static unsigned long mpfr_exp2_aux2 (mpz_t s, mpfr_srcptr r, mpfr_prec_t q, mpfr_exp_t *exps) { mpfr_exp_t expr, *expR, expt; mp_size_t sizer; mpfr_prec_t ql; unsigned long l, m, i; mpz_t t, *R, rr, tmp; mp_size_t sbit, rrbit; MPFR_TMP_DECL(marker); /* estimate value of l */ MPFR_ASSERTD (MPFR_GET_EXP (r) < 0); l = q / (- MPFR_GET_EXP (r)); m = __gmpfr_isqrt (l); /* we access R[2], thus we need m >= 2 */ if (m < 2) m = 2; MPFR_TMP_MARK(marker); R = (mpz_t*) MPFR_TMP_ALLOC ((m + 1) * sizeof (mpz_t)); /* R[i] is r^i */ expR = (mpfr_exp_t*) MPFR_TMP_ALLOC((m + 1) * sizeof (mpfr_exp_t)); /* expR[i] is the exponent for R[i] */ sizer = MPFR_LIMB_SIZE(r); mpz_init (tmp); mpz_init (rr); mpz_init (t); mpz_set_ui (s, 0); *exps = 1 - q; /* 1 ulp = 2^(1-q) */ for (i = 0 ; i <= m ; i++) mpz_init (R[i]); expR[1] = mpfr_get_z_2exp (R[1], r); /* exact operation: no error */ expR[1] = mpz_normalize2 (R[1], R[1], expR[1], 1 - q); /* error <= 1 ulp */ mpz_mul (t, R[1], R[1]); /* err(t) <= 2 ulps */ mpz_fdiv_q_2exp (R[2], t, q - 1); /* err(R[2]) <= 3 ulps */ expR[2] = 1 - q; for (i = 3 ; i <= m ; i++) { if ((i & 1) == 1) mpz_mul (t, R[i-1], R[1]); /* err(t) <= 2*i-2 */ else mpz_mul (t, R[i/2], R[i/2]); mpz_fdiv_q_2exp (R[i], t, q - 1); /* err(R[i]) <= 2*i-1 ulps */ expR[i] = 1 - q; } mpz_set_ui (R[0], 1); mpz_mul_2exp (R[0], R[0], q-1); expR[0] = 1-q; /* R[0]=1 */ mpz_set_ui (rr, 1); expr = 0; /* rr contains r^l/l! */ /* by induction: err(rr) <= 2*l ulps */ l = 0; ql = q; /* precision used for current giant step */ do { /* all R[i] must have exponent 1-ql */ if (l != 0) for (i = 0 ; i < m ; i++) expR[i] = mpz_normalize2 (R[i], R[i], expR[i], 1 - ql); /* the absolute error on R[i]*rr is still 2*i-1 ulps */ expt = mpz_normalize2 (t, R[m-1], expR[m-1], 1 - ql); /* err(t) <= 2*m-1 ulps */ /* computes t = 1 + r/(l+1) + ... + r^(m-1)*l!/(l+m-1)! using Horner's scheme */ for (i = m-1 ; i-- != 0 ; ) { mpz_fdiv_q_ui (t, t, l+i+1); /* err(t) += 1 ulp */ mpz_add (t, t, R[i]); } /* now err(t) <= (3m-2) ulps */ /* now multiplies t by r^l/l! and adds to s */ mpz_mul (t, t, rr); expt += expr; expt = mpz_normalize2 (t, t, expt, *exps); /* err(t) <= (3m-1) + err_rr(l) <= (3m-2) + 2*l */ MPFR_ASSERTD (expt == *exps); mpz_add (s, s, t); /* no error here */ /* updates rr, the multiplication of the factors l+i could be done using binary splitting too, but it is not sure it would save much */ mpz_mul (t, rr, R[m]); /* err(t) <= err(rr) + 2m-1 */ expr += expR[m]; mpz_set_ui (tmp, 1); for (i = 1 ; i <= m ; i++) mpz_mul_ui (tmp, tmp, l + i); mpz_fdiv_q (t, t, tmp); /* err(t) <= err(rr) + 2m */ l += m; if (MPFR_UNLIKELY (mpz_sgn (t) == 0)) break; expr += mpz_normalize (rr, t, ql); /* err_rr(l+1) <= err_rr(l) + 2m+1 */ if (MPFR_UNLIKELY (mpz_sgn (rr) == 0)) rrbit = 1; else MPFR_MPZ_SIZEINBASE2 (rrbit, rr); MPFR_MPZ_SIZEINBASE2 (sbit, s); ql = q - *exps - sbit + expr + rrbit; /* TODO: Wrong cast. I don't want what is right, but this is certainly wrong */ } while ((size_t) expr + rrbit > (size_t) -q); for (i = 0 ; i <= m ; i++) mpz_clear (R[i]); MPFR_TMP_FREE(marker); mpz_clear (rr); mpz_clear (t); mpz_clear (tmp); return l * (l + 4); }