/* mpfr_fma -- Floating multiply-add Copyright 2001, 2002 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" /* The computation of fma of x y and u is done by fma(s,x,y,z)= z + x*y = s */ int mpfr_fma (mpfr_ptr s, mpfr_srcptr x, mpfr_srcptr y, mpfr_srcptr z, mp_rnd_t rnd_mode) { int inexact = 0; /* Flag calcul exacte */ int not_exact = 0; /* particular cases */ if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y) || MPFR_IS_NAN(z)) { MPFR_SET_NAN(s); MPFR_RET_NAN; } if (MPFR_IS_INF(x) || MPFR_IS_INF(y)) { /* cases Inf*0+z, 0*Inf+z, Inf-Inf */ if ((MPFR_IS_FP(y) && MPFR_IS_ZERO(y)) || (MPFR_IS_FP(x) && MPFR_IS_ZERO(x)) || (MPFR_IS_INF(z) && ((MPFR_SIGN(x) * MPFR_SIGN(y)) != MPFR_SIGN(z)))) { MPFR_SET_NAN(s); MPFR_RET_NAN; } MPFR_CLEAR_NAN(s); if (MPFR_IS_INF(z)) /* case Inf-Inf already checked above */ { MPFR_SET_INF(s); MPFR_SET_SAME_SIGN(s, z); MPFR_RET(0); } else /* z is finite */ { MPFR_SET_INF(s); if (MPFR_SIGN(s) != (MPFR_SIGN(x) * MPFR_SIGN(y))) MPFR_CHANGE_SIGN(s); MPFR_RET(0); } } MPFR_CLEAR_NAN(s); /* now x and y are finite */ if (MPFR_IS_INF(z)) { MPFR_SET_INF(s); MPFR_SET_SAME_SIGN(s, z); MPFR_RET(0); } MPFR_CLEAR_INF(s); if (MPFR_IS_ZERO(x) || MPFR_IS_ZERO(y)) { if (MPFR_IS_ZERO(z)) { int sign_p, sign_z; sign_p = MPFR_SIGN(x) * MPFR_SIGN(y); sign_z = MPFR_SIGN(z); if (MPFR_SIGN(s) != (rnd_mode != GMP_RNDD ? ((sign_p < 0 && sign_z < 0) ? -1 : 1) : ((sign_p > 0 && sign_z > 0) ? 1 : -1))) { MPFR_CHANGE_SIGN(s); } MPFR_SET_ZERO(s); MPFR_RET(0); } else return mpfr_set (s, z, rnd_mode); } if (MPFR_IS_ZERO(z)) return mpfr_mul (s, x, y, rnd_mode); /* General case */ /* Detail of the compute */ /* u <- x*y */ /* t <- z+u */ { /* Declaration of the intermediary variable */ mpfr_t t, u; int d; int accu = 0; /* Declaration of the size variable */ mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */ mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */ mp_prec_t Nz = MPFR_PREC(z); /* Precision of input variable */ mp_prec_t Ns = MPFR_PREC(s); /* Precision of output variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ long int err; /* Precision of error */ unsigned int first_pass = 0; /* temporary precision */ /* compute the precision of intermediary variable */ Nt = MAX(MAX(Nx,Ny),Nz); /* the optimal number of bits is MPFR_EXP(u)-MPFR_EXP(v)+1 */ /* but u and v are not yet compute, also we take in account */ /* just one bit */ Nt += 1 + _mpfr_ceil_log2(Nt) + 20; /* initialise the intermediary variables */ mpfr_init(u); mpfr_init(t); /* First computation of fma */ do { if (accu++ > 2) { mpfr_clear(t); mpfr_clear(u); /* General case */ /* Detail of the compute */ /* u <- x*y exact */ /* s <- z+u */ /* if we take prec(u) >= prec(x) + prec(y), the product u <- x*y is always exact */ mpfr_init2 (u, MPFR_PREC(x) + MPFR_PREC(y)); mpfr_mul (u, x, y, GMP_RNDN); /* always exact */ inexact = mpfr_add (s, z, u, rnd_mode); mpfr_clear(u); return inexact; } /* reactualisation of the precision */ mpfr_set_prec(u, Nt); mpfr_set_prec(t, Nt); /* computations */ not_exact = mpfr_mul (u, x, y, GMP_RNDN); not_exact |= mpfr_add (t, z, u, GMP_RNDN); /* Nt = Nt + (d+1) + _mpfr_ceil_log2(Nt); */ d = MPFR_EXP(u) - MPFR_EXP(t); /* estimate of the error */ err = Nt - (d+1); /* actualisation of the precision */ Nt += (1-first_pass) * d + first_pass * 10; if (Nt < 0) Nt = 0; first_pass = 1; } while (not_exact && ((err < 0) || !mpfr_can_round (t, err, GMP_RNDN, rnd_mode, Ns))); inexact = mpfr_set (s, t, rnd_mode); mpfr_clear(t); mpfr_clear(u); } if (not_exact == 0 && inexact == 0) return 0; if (not_exact != 0 && inexact == 0) return 1; return inexact; }