/* mpfr_get_d -- convert a multiple precision floating-point number to a machine double precision float Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "gmp.h" #include "gmp-impl.h" #include "longlong.h" #include "mpfr.h" #include "mpfr-impl.h" #include "mpfr-math.h" static double __mpfr_scale2 _PROTO ((double, int)); #define IEEE_DBL_MANT_DIG 53 static double __mpfr_scale2 (double d, int exp) { #if _GMP_IEEE_FLOATS { union ieee_double_extract x; if (exp < -2099) return 0.0 * d; /* 0 with the correct sign */ x.d = d; if (exp >= 2047 || exp + x.s.exp >= 2047) { /* Return +-infinity */ x.s.exp = 2047; x.s.manl = x.s.manh = 0; } else if (exp + x.s.exp < 1) { exp += x.s.exp; if (exp <= -52) return 0.0 * d; /* 0 with the correct sign */ x.s.exp = 1; /* smallest exponent (biased) */ x.d *= __mpfr_scale2(1.0, exp - 1); } else { x.s.exp += exp; } return x.d; } #else { double factor; if (exp < 0) { factor = 0.5; exp = -exp; } else { factor = 2.0; } while (exp != 0) { if ((exp & 1) != 0) d *= factor; exp >>= 1; factor *= factor; } return r; } #endif } /* Assumes IEEE-754 double precision; otherwise, only an approximated result will be returned, without any guaranty (and special cases such as NaN must be avoided if not supported). */ double mpfr_get_d3 (mpfr_srcptr src, mp_exp_t e, mp_rnd_t rnd_mode) { double d; int negative; if (MPFR_IS_NAN(src)) return MPFR_DBL_NAN; negative = MPFR_SIGN(src) < 0; if (MPFR_IS_INF(src)) return negative ? MPFR_DBL_INFM : MPFR_DBL_INFP; if (MPFR_IS_ZERO(src)) return negative ? -0.0 : 0.0; if (e < -1077) { d = negative ? (rnd_mode == GMP_RNDD ? -DBL_MIN * DBL_EPSILON : -0.0) : (rnd_mode == GMP_RNDU ? DBL_MIN * DBL_EPSILON : 0.0); } else if (e > 1024) { d = negative ? (rnd_mode == GMP_RNDZ || rnd_mode == GMP_RNDU ? -DBL_MAX : MPFR_DBL_INFM) : (rnd_mode == GMP_RNDZ || rnd_mode == GMP_RNDD ? DBL_MAX : MPFR_DBL_INFP); } else { mp_size_t np, i; mp_ptr tp; int carry; np = (IEEE_DBL_MANT_DIG - 1) / BITS_PER_MP_LIMB; tp = (mp_ptr) (*__gmp_allocate_func) ((np + 1) * BYTES_PER_MP_LIMB); carry = mpfr_round_raw(tp, MPFR_MANT(src), MPFR_PREC(src), negative, IEEE_DBL_MANT_DIG, rnd_mode, (int *) 0); if (carry) d = 1.0; else { /* Warning: the rounding may still be incorrect in the rounding to the nearest mode when the result is a subnormal because of a double rounding (-> 53 bits -> final precision). */ d = (double) tp[0] / MP_BASE_AS_DOUBLE; for (i = 1; i <= np; i++) d = (d + tp[i]) / MP_BASE_AS_DOUBLE; /* d is the mantissa (between 1/2 and 1) of the argument rounded to 53 bits */ } d = __mpfr_scale2(d, e); if (negative) d = -d; (*__gmp_free_func) (tp, (np + 1) * BYTES_PER_MP_LIMB); } return d; } /* Note: do not read the exponent if it has no meaning (avoid possible traps on some implementations). */ double mpfr_get_d2 (mpfr_srcptr src, mp_rnd_t rnd_mode) { return mpfr_get_d3 (src, MPFR_IS_FP(src) && MPFR_NOTZERO(src) ? MPFR_EXP(src) : 0, rnd_mode); } double mpfr_get_d (mpfr_srcptr src) { return mpfr_get_d3 (src, MPFR_IS_FP(src) && MPFR_NOTZERO(src) ? MPFR_EXP(src) : 0, __gmp_default_rounding_mode); }