/* mpfr_hypot -- Euclidean distance Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of hypot of x and y is done by * * hypot(x,y)= sqrt(x^2+y^2) = z */ int mpfr_hypot (mpfr_ptr z, mpfr_srcptr x , mpfr_srcptr y , mp_rnd_t rnd_mode) { int inexact; /* Flag exact computation */ int not_exact; mpfr_t t, te, ti; /* auxiliary variables */ mp_prec_t Nx, Ny, Nz; /* size variables */ mp_prec_t Nt; /* precision of the intermediary variable */ mp_exp_t Ex, Ey, sh; mp_exp_unsigned_t diff_exp; MPFR_SAVE_EXPO_DECL (expo); /* particular cases */ if (MPFR_ARE_SINGULAR(x,y)) { if (MPFR_IS_NAN(x) || MPFR_IS_NAN(y)) { MPFR_SET_NAN(z); MPFR_RET_NAN; } else if (MPFR_IS_INF(x) || MPFR_IS_INF(y)) { MPFR_SET_INF(z); MPFR_SET_POS(z); MPFR_RET(0); } else if (MPFR_IS_ZERO(x)) return mpfr_abs (z, y, rnd_mode); else /* y is necessarily 0 */ return mpfr_abs (z, x, rnd_mode); } MPFR_CLEAR_FLAGS(z); if (mpfr_cmpabs (x, y) < 0) { mpfr_srcptr t; t = x; x = y; y = t; } /* now |x| >= |y| */ Ex = MPFR_GET_EXP (x); Ey = MPFR_GET_EXP (y); diff_exp = (mp_exp_unsigned_t) Ex - Ey; Nz = MPFR_PREC(z); /* Precision of output variable */ /* we have x < 2^Ex thus x^2 < 2^(2*Ex), and ulp(x) = 2^(Ex-Nx) thus ulp(x^2) >= 2^(2*Ex-2*Nx). y does not overlap with the result when x^2+y^2 < (|x| + 1/2*ulp(x,Nz))^2 = x^2 + |x|*ulp(x,Nz) + 1/4*ulp(x,Nz)^2, i.e. a sufficient condition is y^2 < |x|*ulp(x,Nz), or 2^(2*Ey) <= 2^(2*Ex-1-Nz), i.e. 2*diff_exp > Nz. Warning: this is true only for Nx <= Nz, otherwise the trailing bits of x may be already very close to 1/2*ulp(x,Nz)! */ if (MPFR_PREC(x) <= Nz && diff_exp > Nz / 2) /* result is |x| or |x|+ulp(|x|,Nz) */ { if (rnd_mode == GMP_RNDU) { /* if z > abs(x), then it was already rounded up */ if (mpfr_abs (z, x, rnd_mode) <= 0) mpfr_add_one_ulp (z, rnd_mode); return 1; } else /* GMP_RNDZ, GMP_RNDD, GMP_RNDN */ { inexact = mpfr_abs (z, x, rnd_mode); return (inexact) ? inexact : -1; } } /* General case */ Nx = MPFR_PREC(x); /* Precision of input variable */ Ny = MPFR_PREC(y); /* Precision of input variable */ /* compute the working precision -- see algorithms.ps */ Nt = MAX(MAX(MAX(Nx, Ny), Nz), 8); Nt = Nt - 8 + MPFR_INT_CEIL_LOG2 (Nt); /* initialise the intermediary variables */ mpfr_init (t); mpfr_init (te); mpfr_init (ti); MPFR_SAVE_EXPO_MARK (expo); sh = MAX (0, MIN (Ex, Ey)); do { Nt += 10; not_exact = 0; /* reactualization of the precision */ mpfr_set_prec (t, Nt); mpfr_set_prec (te, Nt); mpfr_set_prec (ti, Nt); /* computations of hypot */ mpfr_div_2ui (te, x, sh, GMP_RNDZ); /* exact since Nt >= Nx */ if (mpfr_mul (te, te, te, GMP_RNDZ)) /* x^2 */ not_exact = 1; mpfr_div_2ui (ti, y, sh, GMP_RNDZ); /* exact since Nt >= Ny */ if (mpfr_mul (ti, ti, ti, GMP_RNDZ)) /* y^2 */ not_exact = 1; if (mpfr_add (t, te, ti, GMP_RNDZ)) /* x^2+y^2 */ not_exact = 1; if (mpfr_sqrt (t, t, GMP_RNDZ)) /* sqrt(x^2+y^2)*/ not_exact = 1; } while (not_exact && !mpfr_can_round (t, Nt - 2, GMP_RNDN, GMP_RNDZ, Nz + (rnd_mode == GMP_RNDN))); inexact = mpfr_mul_2ui (z, t, sh, rnd_mode); /* if not_exact=1, necessarily the last (Nt-Nz) bits of t are not all zero, otherwise it would not have been possible to round correctly */ MPFR_ASSERTD(not_exact == 0 || inexact != 0); mpfr_clear (t); mpfr_clear (ti); mpfr_clear (te); /* not_exact inexact 0 0 result is exact, ternary flag is 0 0 non zero t is exact, ternary flag given by inexact 1 0 impossible (see above) 1 non zero ternary flag given by inexact */ MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (z, inexact, rnd_mode); }