/* mpfr_log -- natural logarithm of a floating-point number Copyright 1999, 2000, 2001, 2002 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" /* The computation of log(a) is done using the formula : if we want p bits of the result, pi log(a) ~ ------------ - m log 2 2 AG(1,4/s) where s = x 2^m > 2^(p/2) More precisely, if F(x) = int(1/sqrt(1-(1-x^2)*sin(t)^2), t=0..PI/2), then for s>=1.26 we have log(s) < F(4/s) < log(s)*(1+4/s^2) from which we deduce pi/2/AG(1,4/s)*(1-4/s^2) < log(s) < pi/2/AG(1,4/s) so the relative error 4/s^2 is < 4/2^p i.e. 4 ulps. */ /* #define DEBUG */ int mpfr_log (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode) { int m, go_on, size, cancel, inexact = 0; mp_prec_t p, q; mpfr_t cst, rapport, agm, tmp1, tmp2, s, mm; mp_limb_t *cstp, *rapportp, *agmp, *tmp1p, *tmp2p, *sp, *mmp; double ref; TMP_DECL(marker); /* If a is NaN, the result is NaN */ if (MPFR_IS_NAN(a)) { MPFR_SET_NAN(r); MPFR_RET_NAN; } MPFR_CLEAR_NAN(r); /* check for infinity before zero */ if (MPFR_IS_INF(a)) { if (MPFR_SIGN(a) < 0) /* log(-Inf) = NaN */ { MPFR_SET_NAN(r); MPFR_RET_NAN; } else /* log(+Inf) = +Inf */ { MPFR_SET_INF(r); MPFR_SET_POS(r); MPFR_RET(0); } } /* Now we can clear the flags without damage even if r == a */ MPFR_CLEAR_INF(r); if (MPFR_IS_ZERO(a)) { MPFR_SET_INF(r); MPFR_SET_NEG(r); MPFR_RET(0); /* log(0) is an exact -infinity */ } /* If a is negative, the result is NaN */ if (MPFR_SIGN(a) < 0) { MPFR_SET_NAN(r); MPFR_RET_NAN; } /* If a is 1, the result is 0 */ if (mpfr_cmp_ui (a, 1) == 0) { MPFR_SET_ZERO(r); MPFR_SET_POS(r); MPFR_RET(0); /* only "normal" case where the result is exact */ } q=MPFR_PREC(r); ref = mpfr_get_d1 (a) - 1.0; if (ref<0) ref=-ref; /* use initial precision about q+lg(q)+5 */ p=q+5; m=q; while (m) { p++; m >>= 1; } /* adjust to entire limb */ if (p%BITS_PER_MP_LIMB) p += BITS_PER_MP_LIMB - (p%BITS_PER_MP_LIMB); go_on=1; while (go_on==1) { #ifdef DEBUG printf("a="); mpfr_print_binary(a); putchar('\n'); printf("p=%d\n", p); #endif /* Calculus of m (depends on p) */ m = (p + 1) / 2 - MPFR_EXP(a) + 1; /* All the mpfr_t needed have a precision of p */ TMP_MARK(marker); size=(p-1)/BITS_PER_MP_LIMB+1; MPFR_INIT(cstp, cst, p, size); MPFR_INIT(rapportp, rapport, p, size); MPFR_INIT(agmp, agm, p, size); MPFR_INIT(tmp1p, tmp1, p, size); MPFR_INIT(tmp2p, tmp2, p, size); MPFR_INIT(sp, s, p, size); MPFR_INIT(mmp, mm, p, size); mpfr_set_si (mm, m, GMP_RNDN); /* I have m, supposed exact */ mpfr_set_si (tmp1, 1, GMP_RNDN); /* I have 1, exact */ mpfr_set_si (tmp2, 4, GMP_RNDN); /* I have 4, exact */ mpfr_mul_2si (s, a, m, GMP_RNDN); /* I compute s=a*2^m, err <= 1 ulp */ mpfr_div (rapport, tmp2, s, GMP_RNDN);/* I compute 4/s, err <= 2 ulps */ mpfr_agm (agm, tmp1, rapport, GMP_RNDN); /* AG(1,4/s), err<=3 ulps */ mpfr_mul_2ui (tmp1, agm, 1, GMP_RNDN); /* 2*AG(1,4/s), still err<=3 ulps */ mpfr_const_pi (cst, GMP_RNDN); /* compute pi, err<=1ulp */ mpfr_div (tmp2, cst, tmp1, GMP_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */ mpfr_const_log2 (cst, GMP_RNDN); /* compute log(2), err<=1ulp */ mpfr_mul(tmp1,cst,mm,GMP_RNDN); /* I compute m*log(2), err<=2ulps */ cancel = MPFR_EXP(tmp2); mpfr_sub(cst,tmp2,tmp1,GMP_RNDN); /* log(a), err<=7ulps+cancel */ cancel -= MPFR_EXP(cst); #ifdef DEBUG printf("canceled bits=%d\n", cancel); printf("approx="); mpfr_print_binary(cst); putchar('\n'); #endif if (cancel<0) cancel=0; /* If we can round the result, we set it and go out of the loop */ /* we have 7 ulps of error from the above roundings, 4 ulps from the 4/s^2 second order term, plus the canceled bits */ if (mpfr_can_round (cst, p - cancel - 4, GMP_RNDN, rnd_mode, q) == 1) { inexact = mpfr_set (r, cst, rnd_mode); #ifdef DEBUG printf("result="); mpfr_print_binary(r); putchar('\n'); #endif go_on=0; } /* else we increase the precision */ else { p += BITS_PER_MP_LIMB + cancel; } /* We clean */ TMP_FREE(marker); } return inexact; /* result is inexact */ }