/* mpfr_log -- natural logarithm of a floating-point number Copyright (C) 1999 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include #include #include "gmp.h" #include "mpfr.h" #include "gmp-impl.h" /* The computation of log(a) is done using the formula : if we want p bits of the result, pi log(a) ~ ------------ - m log 2 2 AG(1,4/s) where s = x 2^m > 2^(p/2) More precisely, if F(x) = int(1/sqrt(1-(1-x^2)*sin(t)^2), t=0..PI/2), then for s>=1.26 we have log(s) < F(4/s) < log(s)*(1+4/s^2) from which we deduce pi/2/AG(1,4/s)*(1-4/s^2) < log(s) < pi/2/AG(1,4/s) so the relative error 4/s^2 is < 4/2^p i.e. 4 ulps. */ #define MON_INIT(xp, x, p, s) xp = (mp_ptr) TMP_ALLOC(s*BYTES_PER_MP_LIMB); x -> _mp_prec = p; x -> _mp_d = xp; x -> _mp_size = s; x -> _mp_exp = 0; /* #define DEBUG */ int #if __STDC__ mpfr_log(mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode) #else mpfr_log(r, a, rnd_mode) mpfr_ptr r; mpfr_srcptr a; mp_rnd_t rnd_mode; #endif { int m, bool, size, cancel; mp_prec_t p, q; mpfr_t cst, rapport, agm, tmp1, tmp2, s, mm; mp_limb_t *cstp, *rapportp, *agmp, *tmp1p, *tmp2p, *sp, *mmp; double ref; TMP_DECL(marker); /* If a is NaN, the result is NaN */ if (MPFR_IS_NAN(a)) { MPFR_CLEAR_FLAGS(r); MPFR_SET_NAN(r); return 1; } if (MPFR_IS_ZERO(a)) { MPFR_CLEAR_FLAGS(r); MPFR_SET_INF(r); if (MPFR_SIGN(r) != -1) { MPFR_CHANGE_SIGN(r); } return 1; } if (MPFR_IS_INF(a)) { MPFR_CLEAR_FLAGS(r); MPFR_SET_INF(r); if (MPFR_SIGN(r) != 1) { MPFR_CHANGE_SIGN(r); } return 1; } /* Now we can clear the flags without damage even if r == a */ MPFR_CLEAR_FLAGS(r); /* If a is 1, the result is 0 */ if (mpfr_cmp_ui_2exp(a,1,0)==0){ MPFR_SET_ZERO(r); return 0; /* only case where the result is exact */ } q=MPFR_PREC(r); ref=mpfr_get_d(a)-1.0; if (ref<0) ref=-ref; /* use initial precision about q+lg(q)+5 */ p=q+5; m=q; while (m) { p++; m >>= 1; } /* adjust to entire limb */ if (p%BITS_PER_MP_LIMB) p += BITS_PER_MP_LIMB - (p%BITS_PER_MP_LIMB); bool=1; while (bool==1) { #ifdef DEBUG printf("a="); mpfr_print_raw(a); putchar('\n'); printf("p=%d\n", p); #endif /* Calculus of m (depends on p) */ m=(int) ceil(((double) p)/2.0) -MPFR_EXP(a)+1; /* All the mpfr_t needed have a precision of p */ TMP_MARK(marker); size=(p-1)/BITS_PER_MP_LIMB+1; MON_INIT(cstp, cst, p, size); MON_INIT(rapportp, rapport, p, size); MON_INIT(agmp, agm, p, size); MON_INIT(tmp1p, tmp1, p, size); MON_INIT(tmp2p, tmp2, p, size); MON_INIT(sp, s, p, size); MON_INIT(mmp, mm, p, size); mpfr_set_si(mm,m,GMP_RNDN); /* I have m, supposed exact */ mpfr_set_si(tmp1,1,GMP_RNDN); /* I have 1, exact */ mpfr_set_si(tmp2,4,GMP_RNDN); /* I have 4, exact */ mpfr_mul_2exp(s,a,m,GMP_RNDN); /* I compute s=a*2^m, err <= 1 ulp */ mpfr_div(rapport,tmp2,s,GMP_RNDN); /* I compute 4/s, err <= 2 ulps */ mpfr_agm(agm,tmp1,rapport,GMP_RNDN); /* AG(1,4/s), err<=3 ulps */ mpfr_mul_2exp(tmp1,agm,1,GMP_RNDN); /* 2*AG(1,4/s), still err<=3 ulps */ mpfr_const_pi(cst, GMP_RNDN); /* compute pi, err<=1ulp */ mpfr_div(tmp2,cst,tmp1,GMP_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */ mpfr_const_log2(cst,GMP_RNDN); /* compute log(2), err<=1ulp */ mpfr_mul(tmp1,cst,mm,GMP_RNDN); /* I compute m*log(2), err<=2ulps */ cancel = MPFR_EXP(tmp2); mpfr_sub(cst,tmp2,tmp1,GMP_RNDN); /* log(a), err<=7ulps+cancel */ cancel -= MPFR_EXP(cst); #ifdef DEBUG printf("cancelled bits=%d\n", cancel); printf("approx="); mpfr_print_raw(cst); putchar('\n'); #endif if (cancel<0) cancel=0; /* If we can round the result, we set it and go out of the loop */ /* we have 7 ulps of error from the above roundings, 4 ulps from the 4/s^2 second order term, plus the cancelled bits */ if (mpfr_can_round(cst,p-cancel-4,GMP_RNDN,rnd_mode,q)==1) { mpfr_set(r,cst,rnd_mode); #ifdef DEBUG printf("result="); mpfr_print_raw(r); putchar('\n'); #endif bool=0; } /* else we increase the precision */ else { p += BITS_PER_MP_LIMB+cancel; TMP_FREE(marker); } /* We clean */ TMP_FREE(marker); } return 1; /* result is inexact */ }