/* mpfr_log10 -- logarithm in base 10. Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of r=log10(a) r=log10(a)=log(a)/log(10) */ int mpfr_log10 (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode) { int inexact; MPFR_SAVE_EXPO_DECL (expo); /* If a is NaN, the result is NaN */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a))) { if (MPFR_IS_NAN (a)) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* check for infinity before zero */ else if (MPFR_IS_INF (a)) { if (MPFR_IS_NEG (a)) /* log10(-Inf) = NaN */ { MPFR_SET_NAN (r); MPFR_RET_NAN; } else /* log10(+Inf) = +Inf */ { MPFR_SET_INF (r); MPFR_SET_POS (r); MPFR_RET (0); /* exact */ } } else /* a = 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (a)); MPFR_SET_INF (r); MPFR_SET_NEG (r); MPFR_RET (0); /* log10(0) is an exact -infinity */ } } /* If a is negative, the result is NaN */ if (MPFR_UNLIKELY (MPFR_IS_NEG (a))) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* If a is 1, the result is 0 */ if (mpfr_cmp_ui (a, 1) == 0) { MPFR_SET_ZERO (r); MPFR_SET_POS (r); MPFR_RET (0); /* result is exact */ } MPFR_SAVE_EXPO_MARK (expo); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, tt; MPFR_ZIV_DECL (loop); /* Declaration of the size variable */ mp_prec_t Ny = MPFR_PREC(r); /* Precision of output variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ mp_exp_t err; /* Precision of error */ /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 4+ MPFR_INT_CEIL_LOG2 (Ny); /* initialise of intermediary variables */ mpfr_init2 (t, Nt); mpfr_init2 (tt, Nt); /* First computation of log10 */ MPFR_ZIV_INIT (loop, Nt); for(;;) { /* compute log10 */ mpfr_set_ui (t, 10, GMP_RNDN); /* 10 */ mpfr_log (t, t, GMP_RNDD); /* log(10) */ mpfr_log (tt, a, GMP_RNDN); /* log(a) */ mpfr_div (t, tt, t, GMP_RNDN); /* log(a)/log(10) */ /* estimation of the error */ err = Nt - 4; if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; /* log10(10^n) is exact: FIXME: Can we have 10^n exactly representable as a mpfr_t but n can't fit an unsigned long? */ if (MPFR_IS_POS (t) && mpfr_integer_p (t) && mpfr_fits_ulong_p (t, GMP_RNDN) && !mpfr_ui_pow_ui (tt, 10, mpfr_get_ui (t, GMP_RNDN), GMP_RNDN) && mpfr_cmp (a, tt) == 0) break; /* actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); mpfr_set_prec (tt, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (r, t, rnd_mode); mpfr_clear (t); mpfr_clear (tt); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inexact, rnd_mode); }