/* mpfr_mul -- multiply two floating-point numbers Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" int mpfr_mul (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode) { int sign_product, cc, inexact; mp_exp_t ax, bx, cx; mp_limb_t *ap, *bp, *cp, *tmp; mp_limb_t b1; mp_prec_t aq, bq, cq; mp_size_t an, bn, cn, tn, k; TMP_DECL(marker); /* deal with NaN and zero */ if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c)) { MPFR_SET_NAN(a); MPFR_RET_NAN; } MPFR_CLEAR_NAN(a); sign_product = MPFR_SIGN(b) * MPFR_SIGN(c); if (MPFR_IS_INF(b)) { if (MPFR_IS_INF(c) || MPFR_NOTZERO(c)) { if (MPFR_SIGN(a) != sign_product) MPFR_CHANGE_SIGN(a); MPFR_SET_INF(a); MPFR_RET(0); /* exact */ } else { MPFR_SET_NAN(a); MPFR_RET_NAN; } } else if (MPFR_IS_INF(c)) { if (MPFR_NOTZERO(b)) { if (MPFR_SIGN(a) != sign_product) MPFR_CHANGE_SIGN(a); MPFR_SET_INF(a); MPFR_RET(0); /* exact */ } else { MPFR_SET_NAN(a); MPFR_RET_NAN; } } MPFR_ASSERTN(MPFR_IS_FP(b) && MPFR_IS_FP(c)); MPFR_CLEAR_INF(a); /* clear Inf flag */ if (MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c)) { if (MPFR_SIGN(a) != sign_product) MPFR_CHANGE_SIGN(a); MPFR_SET_ZERO(a); MPFR_RET(0); /* 0 * 0 is exact */ } bx = MPFR_EXP(b); cx = MPFR_EXP(c); /* Note: the exponent of the exact result will be e = bx + cx + ec with ec in {-1,0,1} and the following assumes that e is representable. */ MPFR_ASSERTN(MPFR_EMAX_MAX <= (MP_EXP_T_MAX >> 1)); MPFR_ASSERTN(MPFR_EMIN_MIN >= -(MP_EXP_T_MAX >> 1)); if (bx + cx > __gmpfr_emax + 1) return mpfr_set_overflow (a, rnd_mode, sign_product); if (bx + cx < __gmpfr_emin - 2) return mpfr_set_underflow (a, rnd_mode == GMP_RNDN ? GMP_RNDZ : rnd_mode, sign_product); ap = MPFR_MANT(a); bp = MPFR_MANT(b); cp = MPFR_MANT(c); aq = MPFR_PREC(a); bq = MPFR_PREC(b); cq = MPFR_PREC(c); an = (aq-1)/BITS_PER_MP_LIMB + 1; /* number of significant limbs of a */ bn = (bq-1)/BITS_PER_MP_LIMB + 1; /* number of significant limbs of b */ cn = (cq-1)/BITS_PER_MP_LIMB + 1; /* number of significant limbs of c */ MPFR_ASSERTN((mp_size_unsigned_t) bn + cn <= MP_SIZE_T_MAX); k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */ MPFR_ASSERTN(bq + cq >= bq); /* no integer overflow */ tn = (bq + cq - 1) / BITS_PER_MP_LIMB + 1; /* <= k, thus no int overflow */ MPFR_ASSERTN(k <= ((size_t) -1) / BYTES_PER_MP_LIMB); TMP_MARK(marker); tmp = (mp_limb_t *) TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB); /* multiplies two mantissa in temporary allocated space */ b1 = (bn >= cn) ? mpn_mul (tmp, bp, bn, cp, cn) : mpn_mul (tmp, cp, cn, bp, bn); /* now tmp[0]..tmp[k-1] contains the product of both mantissa, with tmp[k-1]>=2^(BITS_PER_MP_LIMB-2) */ b1 >>= BITS_PER_MP_LIMB - 1; /* msb from the product */ tmp += k - tn; if (b1 == 0) mpn_lshift (tmp, tmp, tn, 1); cc = mpfr_round_raw (ap, tmp, bq + cq, sign_product < 0, aq, rnd_mode, &inexact); if (cc) /* cc = 1 ==> result is a power of two */ ap[an-1] = MPFR_LIMB_HIGHBIT; TMP_FREE(marker); ax = (bx + cx) + (mp_exp_t) (b1 - 1 + cc); if (ax > __gmpfr_emax) return mpfr_set_overflow (a, rnd_mode, sign_product); if (ax < __gmpfr_emin) { /* In the rounding to the nearest mode, if the exponent of the exact result (i.e. before rounding, i.e. without taking cc into account) is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if both arguments are powers of 2), then round to zero. */ if (rnd_mode == GMP_RNDN && ((bx + cx) + (mp_exp_t) b1 < __gmpfr_emin || (mpfr_powerof2_raw (b) && mpfr_powerof2_raw (c)))) rnd_mode = GMP_RNDZ; return mpfr_set_underflow (a, rnd_mode, sign_product); } MPFR_EXP(a) = ax; if (MPFR_SIGN(a) != sign_product) MPFR_CHANGE_SIGN(a); return inexact; }